深度学习这门技术真的是挺厉害的,能够通过多层非线性单元从大量数据中提取出高级特征。你如果对机器学习感兴趣,肯定会对《Deep Learning》这本书有兴趣。它不仅涵盖了线性代数、概率论这些数学基础,还详细了深度学习的核心算法。书中的内容丰富,从理论到实际应用都有。像梯度下降、反向传播等常用的优化算法,书中讲得清楚,理论结合实际,挺适合想要深入了解深度学习的你哦。要是你是入门级别,会觉得有点挑战,但只要你掌握了基础,后面就会慢慢理解。对于那些已经有一定机器学习基础的朋友,这本书绝对能你更进一步,掌握更多深度学习的技巧和实战知识。
Deep Learning深度学习经典教材
相关推荐
Deep Learning Trends and Fundamentals
深度学习历史趋势
一、深度学习历史趋势
神经网络的众多名称和命运变迁:
早期发展:20世纪50年代末至60年代初,神经网络研究开始兴起,受到广泛关注。
第一次寒冬:1970年代,由于理论和技术上的限制,神经网络研究进入低谷期。
反向传播算法的引入:1980年代中期,反向传播算法的提出极大地推动了神经网络的研究和发展。
第二次寒冬:1990年代中期,尽管有了突破性的进展,但由于计算资源和数据量的限制,神经网络再次遭遇挫折。
深度学习的复兴:21世纪初至今,随着GPU技术的发展、大数据时代的到来以及算法的不断创新,深度学习迎来了爆发式的增长。
与日俱增的数据量:
互联
算法与数据结构
10
2024-10-31
Deep Learning李宏毅教程
深度学习的入门资料挺全的,尤其是李宏毅老师的教程,适合刚接触深度学习的小伙伴。这份资源包含了从基础到进阶的知识,涵盖了各种常用的深度学习算法、框架及其实现。得清晰易懂,边学边做也有成就感。讲到卷积神经网络(CNN)的部分,配合了不少实践案例,真的是理论与实战结合。PDF文件内容详细,还有不少相关学习资源链接,可以你拓展视野。如果你刚开始学习深度学习,试试看这份资源,绝对是个不错的选择。毕竟学习深度学习,理论与实践结合才是王道,试试里面的代码实现,效果不错哦。
算法与数据结构
0
2025-06-24
ndarray-basic-operations-introduction-to-deep-learning-frameworks
NDArray基本操作对NDArray的基本数学运算是元素粒度的:
# 创建两个全为1的NDArray
a = mx.nd.ones((2,3))
b = mx.nd.ones((2,3))
# 元素级加法
c = a + b
# 元素级减法
d = -c
# 元素级幂和正弦运算,然后转置
e = mx.nd.sin(c**2).T
# 元素级最大值
f = mx.nd.maximum(a, c)
f.asnumpy()
算法与数据结构
8
2024-10-31
Deep Learning Toolbox Importer for TensorFlow-Keras Models
深度学习工具箱导入器对于 TensorFlow-Keras 模型的支持,简直是个神助攻!如果你做深度学习相关项目,经常要将不同的模型互相转换,或者在不同的框架之间迁移模型,肯定会对这类工具产生兴趣。导入器支持多种格式的 TensorFlow 和 Keras 模型导入,简化了转换过程,让你省时省力。要是你正需要快速迁移或者加载模型,可以尝试这个工具,操作起来也比较直观。
算法与数据结构
0
2025-07-02
Bi-LSTM MATLAB Code and Data Science Notes Deep Learning,Machine Learning,and More
Bi-LSTM MATLAB Code – DataScience-Notes 数据科学笔记。提供有关数据科学的笔记、代码和实例,涵盖数学、统计、机器学习、深度学习等基础知识及相关应用场景。参考资料已在最后列出。大部分代码采用Python编写,涉及的库及框架包括: NumPy、SymPy、Scikit-learn、Gensim、TensorFlow 1.X、TensorFlow 2.X 和 MXNet。部分数值分析代码则使用MATLAB编写。
注释:- (notebook): Jupyter Notebook 文件链接- (MATLAB): 相应的 MATLAB 代码链接- (md): M
Matlab
12
2024-11-05
MySQL经典教材
访问www.pdftoword.com,将PDF格式的MySQL经典教材转换为Word格式。
MySQL
18
2024-05-25
MATLAB经典教材改写
这本MATLAB编程教程我亲自看过,适合入门级别,高手可以忽略。
Matlab
9
2024-08-28
Detecting Single Information Bit in Noise Ocean Using Deep Learning Matlab Implementation
概述
本示例展示了如何使用卷积神经网络(CNN)快速检测在噪声海洋中的单个信息位。生成一个指定大小的随机矩阵,并在矩阵的一个位置将其中一半像素设置为true,另一半设置为false。然后,使用CNN进行矩阵分类,将矩阵分为两类('class 1' 和 'class 2')。
CNN训练与检测
通过深度学习模型训练,我们能够快速识别并定位矩阵中的单个信息位位置。与传统机器学习算法相比,CNN在这种任务中的收敛速度要快得多,且具有强大的处理能力。
应用场景
这种方法不仅适用于矩阵,也可以推广到其他数据形式,如基因组数据中的单核苷酸变异(SNPs)或财务数据中的欺诈交易。该方法为高效分类和信息位检测
Matlab
10
2024-11-05
SQL入门经典教材
深入浅出讲解SQL基础与进阶,推荐新手学习。
SQLServer
15
2024-04-30