基于矩阵的表示-IBM知识管理白皮书
关于向量空间,有以下常规且常用的定义:1. 若S是数域F上向量空间V的子集,且在S上限制V的加法和F对V的数乘,使得S也成为一个向量空间,则称S为V的子空间。2. 若V₁,...,Vₙ是域F上的向量空间,令V = {(v₁,...,vₙ) ∣ vᵢ ∈ Vᵢ,i = 1,...,n},在其上定义加法(u₁,...,uₙ) + (v₁,...,vₙ) = (u₁+v₁,...,uₙ+vₙ),F对V的数乘为r(u₁,...,uₙ) = (ru₁,...,ruₙ),这里r ∈ F,则V成为一个向量空间,称为向量空间V₁,...,Vₙ的直和(direct sum),记作V = V₁ ⊕⋯⊕ Vₙ。若S
算法与数据结构
12
2024-07-14
线性映射IBM知识管理白皮书
线性映射的概念讲得挺透彻的,是从坐标映射到列向量的那个例子,配合后面的矩阵截取和子空间投影,整体逻辑清晰不拧巴。适合对线性代数有点基础、想深入理解线性变换本质的同学。你如果平时在搞数据可视化或者ML 建模,这些基本功还是得吃透,多降维、投影的操作,其实底层逻辑都绕不开这块。
算法与数据结构
0
2025-06-14
IBM知识管理白皮书子空间解析
幂零变换的子空间拆解方式,有点像把一团乱麻顺一顺,一根一根理清楚。《ibm_知识管理白皮书》讲得就是这个事,用了不少线性代数的经典套路,比如子空间直和、不变子空间、循环子空间那一套,嗯,内容挺硬核的,但结构清晰,逻辑也顺。讲 A 是幂零时,怎么一步步拆成循环子空间直和,拿捏得蛮到位,像V = C₁ ⊕ C₂ ⊕⋯⊕ Ck这种结果对熟悉 矩阵相似化 或 Jordan 标准型 的你来说应该不陌生。讲得还挺透,不是一笔带过的那种。另外,里面还用到了补空间的构造思路,比如怎么搞个 W ⊕ U₁ ⊕ (C₁ ∩ Ṽ₁) = Ṽ₁,就为了能拆出一个理想的 V₁,不多不少刚好 A 在上面幂零。可以看出作
算法与数据结构
0
2025-06-13
线性代数的研究对象-IBM知识管理白皮书
A1.1 线性代数的研究对象。线性代数是什么?它所探讨的核心内容是什么?要明晰这一点,首先需理解代数的本质。代数的定义随着时代变迁而不断演变。在小学阶段学习的是算术,主要关注数字的运算,这些内容早在几千年前便为人所知,并延续至今。直到“数字符号化”出现后,这种情况才有所改变。在中国,这一转变始于宋元时代(约公元13世纪五六十年代),当时引入了“天元术”和“四元术”,用符号代替数字。在西方,完全实现数字符号化是在16世纪。数字符号化的兴起标志着代数学“史前时期”的终结和代数学的诞生,包括解一元二次方程和多元方程组的能力,这些内容也是目前中学代数课程的核心。代数学的发展涵盖了从一元到四元的代数方程
算法与数据结构
21
2024-07-14
向量空间与线性变换IBM知识管理白皮书
向量空间与线性变换这块知识,真的是线性代数中的核心内容。简单来说,向量空间就是一组满足特定加法和数乘规则的对象。理解这一点后,线性变换就容易多了,它是向量空间之间的一种映射,保持了加法和数乘的性质。你要是搞数学建模、计算机图形学,或者做机器学习,这两者的理解都有。
不过,搞清楚这些概念,不一定是马上就能用得上的事。像是矩阵加法、矩阵数乘这类操作,多时候都是基础运算,但它们的应用场景广,是在数据和高性能计算方面。
如果你在学习或者工作中遇到问题,可以多参考一些相关文献,比如 MIT 的经典教材《线性代数导论》或者一些实用教程,这些都能你理解并快速上手。
,理解了线性空间和线性变换,你在高维数据、
算法与数据结构
0
2025-06-15
复方阵的酉相似探讨-IBM知识管理白皮书
在Euclid空间的线性函数概念可以推广到酉空间。定义8.2.1指出,如果对于酉空间V中任意的α, α和复数λ, λ,函数f (λα + λα) = λ f (α) + λ f (α),则称f (α)为V的线性函数。集合V∗表示n维酉空间V的所有线性函数,是一个复线性空间,称为V的对偶空间。映射σ将酉空间V映射到其对偶空间V∗,形成线性空间的同构映射。利用映射σ,可以证明如果{β, β, . . . , βn}是V的基,则{ fβ , fβ , . . . , fβn}是V∗的一组基,称为{β, β, . . . , βn}的对偶基。线性变换A在V的内积下的
算法与数据结构
11
2024-08-22
线性函数与伴随变换-ibm_知识管理白皮书改写
§7.3讨论Euclid空间V中的线性函数及其定义。一个实函数f(α),其中α ∈ V,如果对所有λ, λ ∈ R和α, α ∈ V,满足f(λα + λα) = λ f(α) + λ f(α),则称其为V上的线性函数。例如,对于定向量β ∈ V,内积(α, β)也是V上的线性函数,记作fβ(α)。进一步,如果f(α)是V上的线性函数,则f() = 。对于任意λ, λ, . . . , λk ∈ R和α, α, . . . , αk ∈ V,有f( k ∑ j= λ jα j) = k ∑ j= λ j f(α j)。记Euclid空间V上所有线性函数的
算法与数据结构
7
2024-07-18
Expressions白皮书改写
SQL_SERVER2005详细表达式用法介绍的白皮书
SQLServer
15
2024-07-29
Amoeba技术白皮书
Amoeba位于客户端与数据库服务器之间,具备负载均衡、高可用性、SQL过滤、高并发支持、读写分离和Query Route功能,能够根据预设规则将SQL查询路由至目标数据库。该技术在降低多数据库结构复杂性和数据切分带来的影响方面表现突出,支持读写分离的故障转移和负载均衡,特别适用于解决大数据环境下的数据切分挑战。Amoeba目前支持MySQL 4.1及以上版本(协议版本:10),暂不支持事务和DDL语句分配至非默认数据库。运行环境要求至少为MySQL 4.1及以上版本和Java 1.5及以上版本。
MySQL
12
2024-07-30