想做数据聚类的同学,这个GMM-Master资源包挺适合你的。它实现了高斯混合模型(GMM),可以你在 Python 中搞定数据聚类和密度估计。利用scikit-learn库,你可以通过设定聚类数量、协方差类型等参数,轻松训练出一个合适的 GMM 模型。而且,你还可以通过预测数据点的聚类类别,甚至是得到每个数据点属于某个聚类的概率。你会发现,通过绘制散点图和拟合曲线,你能清晰地看到数据的分布和聚类效果。GMM-Master里了主程序、数据文件和绘图模块,跑起来简单。只要运行main.py,你就能看到数据聚类的效果,甚至可以根据结果微调模型。GMM应用广泛,像图像分割、语音识别、推荐系统等场景都有它的身影。如果你还没玩过高斯混合模型,试试这个资源包,挺不错的。