matlab 代码的自闭特征信息抽样,逻辑清晰、结构规整,数据也都准备好了。整套代码搭配 R 脚本配合使用,适合做模型复现、贝叶斯建模或认知行为研究的同学。模型比较结果也输出成了 csv,查阅方便;行为数据、反应时、刺激模拟等信息都拆得细,跑起来基本不踩坑。
MATLAB自闭症特征与信息采样模型
相关推荐
信号采样与重建MATLAB程序实现
关于信号采样与重建的MATLAB程序,展示了如何有效实现信号采样及其重建过程。该程序详细介绍了信号处理中的关键步骤,通过MATLAB工具实现了高效的信号重建技术。
Matlab
8
2024-07-29
信号采样与重建的Matlab实现
通过对信号的采样与重建,理解采样定理的意义。
Matlab
6
2024-11-03
MATLAB开发-红细胞增多症分析与实现
在MATLAB中,开发与红细胞增多症相关的分析工具,可以通过编写相关函数来实现疾病的诊断与监测。劳斯的象征性政策阵列可以用于该领域的算法开发,提供不同的函数实现来处理血液数据。在MATLAB Central中,您可以找到多种类似的函数和工具,帮助分析红细胞增多症的相关数据,增强开发效率与准确度。
Matlab
10
2024-11-05
信息描述与数据模型管理
信息描述与数据模型是现实世界特征的模拟和抽象,根据模型应用的不同目的,可以分为两个层次:一是概念模型(也称信息模型),它是从数据的应用语义视角来抽取模型并按用户的观点来对数据和信息进行建模。这类模型主要用于数据库设计阶段,与具体的数据库管理系统无关。二是数据模型,按计算机系统的观点对数据进行建模,是数据库系统的核心和基础。数据模型包括层次模型(用树型结构组织数据)、网状模型(用图形结构组织数据)、关系模型(用简单二维表结构组织数据)和对象关系模型(用复杂的表格及其他结构组织数据)。
SQLServer
16
2024-07-26
基于云模型的植物特征提取(matlab源码)
利用正态云模型中的正向和逆向云发生器,实现了对植物部分特征的提取。
Matlab
10
2024-09-24
Matlab采样率转换实现
采样率转换:改变信号采样率,使其与原始信号不同。
应用:减少存储空间、增加细节和精度。
MATLAB实现方法:插值和抽取。
统计分析
16
2024-05-13
Matlab学习采样的基础示例蒙特卡罗、拒绝和重要性采样
使用Matlab学习采样的基础示例:包括蒙特卡罗、拒绝采样、重要性采样。这些示例计算0-1区间内正方形区域的面积,展示了简化模型的应用。具体示例有:1. 均匀采样,2. 接受拒绝采样,3. 重要性采样。针对MCMC、MH和Gibbs采样,建议参考在线代码资源。注意,MCMC、MH和Gibbs采样的实现需另行查阅。
Matlab
12
2024-07-13
吉布斯采样matlab代码-ihmm
iHMM采样库提供学习和采样有限HMM和无限HMM的代码。代码依赖于Tom Minka的lightspeed和fastfit软件包,这些库必须位于Matlab路径上才能使采样算法正常工作。
iHMM多项式输出:
TestiHmmGibbsSampler.m:在具有多项式输出的iHMM上运行Gibbs采样器,演示如何使用iHmmSampleGibbs.m。使用命令“ help iHmmSampleGibbs”获取参数信息。
TestiHmmBeamSampler.m:在具有多项式输出的iHMM上运行光束采样器,演示如何使用iHmmSampleBeam.m。使用命令“ help iHmmSamp
Matlab
15
2024-05-16
信息增益率与随机森林特征选择算法
在数据挖掘、机器学习和模式识别领域,特征选择是一个至关重要的问题。针对传统信息增益在类和特征分布不均时存在的偏好问题,本研究提出了一种基于信息增益率和随机森林的特征选择算法。
该算法融合了filter和wrapper模式的优势,首先从信息相关性和分类能力两个方面对特征进行综合度量,然后采用序列前向选择(SFS)策略进行特征选择。算法以分类精度作为评价指标对特征子集进行度量,最终获得最优特征子集。
实验结果表明,该算法不仅可以有效降低特征空间维度,还能提升分类算法的分类性能和查全率。
数据挖掘
21
2024-05-21