盲信号自适应算法挺有意思的,尤其在信号分离问题时,是在无线通信、音频和医学成像这类领域,经常需要用到。其实,核心思想简单,简单来说,就是在没有太多先验知识的情况下,通过一些巧妙的算法从混合信号中分离出独立信号。一个常见的算法就是独立成分(ICA),它通过非线性变换让信号尽量独立,关键点在于非高斯信号。

在这个 MATLAB 代码中,你可以看到几个常用的自适应算法,比如FastICAJADEFastICA通过最大化负熵来快速实现信号分离,而JADE则是基于特征值分解的思路,挺适合用来分离信号的。要注意,这些算法的效果会受到数据质量、初始条件、学习速率等多方面因素的影响,所以调参是关键的。

如果你想了解更多应用实例,可以查看以下相关资源,里面有多实践中的代码实现和使用技巧。