混合模型的离群点检测挺适合搞数据的朋友,尤其是你在那种看起来不太对劲的数据点时,真挺好用的。它的思路也不复杂,就是用几个概率分布来“混着”数据,通过每个点属于哪个分布的概率,来判断它是不是“掉队”的。文中讲得还蛮细,尤其是关于多元正态分布的解释,配上图和例子,看一遍就明白了。
混合模型离群点检测指南(含TinyXML中文讲解)
相关推荐
基于 TinyXML 的离群点检测操作指南
基于 TinyXML 的离群点检测操作指南
全局离群点检测
图 18.12 展示了全局离群点检测的气泡图。
局部离群点检测
“Local Outlier Factor”操作符用于执行基于本地的离群点检测。操作流程如图 18.13 所示,检测结果如图 18.13 所示。
算法与数据结构
19
2024-05-25
TinyXML离群点参数设置指南[中文]
添加离群点的参数设置在数据时常见,TinyXML 指南中的这一部分讲得挺清楚的。,添加Map操作符后,你需要进行一些离群点的参数设置,图 18.9 就是展示如何映射这些离群点。,使用Append操作符合并数据,最终得到合并后的数据集。图 18.10 是操作流程图,数据的散点图则通过图 18.11 呈现出来。如果你正在做数据清洗或,这个方法挺实用的,尤其是当你要大规模的数据集时。对于初学者来说,TinyXML 的文档解释得到位,配合示例,学习起来也比较轻松。如果你想进一步了解操作符的应用,可以参考一些相关链接,像IN操作符、SQL操作符等,都会你更好地掌握相关概念。
算法与数据结构
0
2025-07-01
小簇聚类中的离群点检测方法
利用聚类技术检测离群点的一种方法是丢弃远离其他簇的小簇。通常情况下,这个过程可以简化为移除小于某个最小阈值的所有簇。虽然可以与各种聚类技术结合使用,但需要设定最小簇大小和小簇与其他簇之间距离的阈值。此外,这种方法对于聚类数量的选择非常敏感,因为很难将离群点的得分附加到对象上。在图18中,当聚类簇数K=2时,可以清楚地看到一个包含5个对象的小簇远离了大部分对象,可能被视为离群点。
算法与数据结构
16
2024-10-03
基于方形对称邻域的局部离群点检测
针对 NDOD 算法检测过渡区域对象的不足和算法复杂度高的问题,提出了一种基于方形对称邻域的局部离群点检测方法。该方法采用方形邻域,引入记忆思想,并重新定义离群度度量,提高了检测精度和速度。实验结果表明,该方法优于 NDOD 等算法。
数据挖掘
20
2024-05-25
基于LOF算法的离群点检测MATLAB程序
本程序利用训练数据集,计算测试数据集中每个样本的局部离群因子 (LOF) 。
注意事项:
假设数据已经过适当的标准化处理,并将数据中的分类特征转换为连续值。
相关数据预处理函数可在“dataset”文件夹中找到。
算法与数据结构
20
2024-05-25
R语言大数据分析与离群点检测实战指南
在大数据分析领域,R语言因其强大的统计计算能力和丰富的可视化库而被广泛应用于处理和解析海量数据。本案例主要探讨了如何使用R语言进行离群点检测,以及如何通过相关系数分析来评估数据的相关性。
离群点检测
离群点检测是数据分析中的重要环节,它帮助识别并排除可能对整体分析结果产生误导的极端值。在这个例子中,采用了DB方法(基于聚类的离群点检测)。通过kmeans()函数将数据分为三类,计算每个样本到三个聚类中心点的距离,并构建一个矩阵Dsit。然后通过apply()函数找到每行(样本)的最小距离值y,并确定y矩阵的95%分位数a。最终筛选出距离大于分位数a的样本作为离群点。代码中首先读取数据并进行预处
算法与数据结构
7
2024-10-31
基于邻域系统密度差异的高效离群点检测算法
在离群点检测领域,传统LOF算法在高维离散数据检测中精度较低,且参数敏感性较高。为了解决这一问题,提出了NSD算法(Neighborhood System Density Difference)。该算法基于密度差异度量的邻域系统方法,具有较高的检测精度和低参数敏感性。NSD算法的核心步骤如下:
截取距离邻域计算:首先计算数据集中对象在截取距离内的邻居点个数。
邻域系统密度计算:其次,计算对象的邻域系统密度,从而确定对象与邻域数据间的密度差异。
密度差异比较:通过比较对象密度和邻居密度,评估对象与邻域数据趋向于同一簇的程度,判断离群点的可能性。
输出离群点:最终识别出最可能是离群
数据挖掘
13
2024-10-30
交叉销售-tinyxml指南(中文)
交叉销售通过发行联名卡等合作,使客户在其他企业消费中获得积分,增强与公司的联系,提升忠诚度。 通过数据挖掘分析重要客户的里程积累方式,针对性促销。保持客户对于企业至关重要,不仅因为争取新客户的成本高于维持老客户的成本,更重要的是客户流失会造成公司收益的直接损失。因此,在客户识别期和发展期后,航空公司应努力维系客户关系水平,提供优质的服务产品,提高服务水平来提高客户满意度,并尽可能延长高水平客户的消费期。
算法与数据结构
17
2024-05-25
时序模式-tinyxml中文指南
第16章 时间序列
16.1 时序模式
在餐饮业中,预测菜品销售量至关重要。基于时间序列分析,我们可以预测未来销售量,减少脱销和备料不足造成的延误,优化服务和物流成本。
16.1.1 时间序列算法
常用的时间序列模型如下表所示:
| 模型名称 | 描述 ||---|---|| 平滑法 | 削弱随机波动,使序列平滑化 || 趋势拟合法 | 建立回归模型,预测趋势 || 组合模型 | 考虑趋势、季节性、周期性和不规则变动 |
根据序列特点,可以构建加法或乘法模型:
加法模型:
tX = T + S + C +
乘法模型:
tX = (T + S) * (C + )
算法与数据结构
21
2024-05-26