这是一个完整的异常检测系统项目,使用了 Django Restframework 构建,并结合了 Spark SQL 和 Spark Mllib 进行数据分析。该项目已通过测试,可以稳定运行。
基于 Django 和 Spark 的异常检测系统
相关推荐
基于统计的异常检测算法综述
基于统计的方法假设给定的数据集服从某种随机分布,通过不一致性测试来识别异常。然而,在实际应用中,数据往往不符合理想的数学分布,尤其是在高维情况下,估计数据点的分布变得极其困难。
算法与数据结构
20
2024-08-16
基于 Django 的图书推荐系统设计与实现
图书推荐系统
本系统基于 Python Django 框架构建,为用户提供个性化的图书推荐服务。
管理员功能
用户管理:删除用户
书籍管理:添加书籍、删除书籍
用户功能
用户认证:注册、登录
图书检索:查询书籍
交互评分:对书籍进行评分
购物车:添加书籍到购物车、删除购物车内的书籍
书单管理:创建书单、添加书籍到书单、删除书单
订单操作:生成订单
算法与数据结构
12
2024-07-01
异常检测算法综述基于不同方法的异常探测分类
异常检测方法可以基于多种不同的方法进行分类:包括统计学方法、距离度量方法、偏差检测方法和密度估计方法。这些方法在处理高维数据时也有各自的应用场景。
算法与数据结构
17
2024-07-20
基于LSTM自编码器的异常检测
LSTM自编码器在异常检测领域展现出强大的能力。其通过学习正常数据的时序模式,能够有效识别偏离预期行为的异常。该模型首先利用LSTM编码器将输入序列压缩成低维特征表示,然后利用LSTM解码器尝试从该表示中重构原始序列。对于正常数据,模型能够实现高精度的重构;而对于异常数据,由于其特征与训练数据存在差异,模型的重构误差会显著增大。因此,可以通过设置阈值来区分正常和异常数据。
数据挖掘
9
2024-05-27
基于统计学习的网络异常检测技术
基于统计学习的网络异常行为检测技术,挺适合你深入了解 APT 攻击的检测方式,尤其是对大数据感兴趣的同学。它不是那种光说理论的文章,里面讲了不少实战例子,比如怎么命令控制通道,怎么做统计建模,实用性还蛮强。
APT 攻击的威胁现在越来越隐蔽,靠传统的特征匹配早就不够用了。基于统计学习的异常检测,就是用数据说话,比如用一些行为参数建模,看哪个点突然飙高或者异常,那多半就是有问题了。
文里讲的技术路线比较清晰,从参数提取到统计建模,每一步都不绕弯子,像是命令控制、数据传输这些攻击路径都能拿来做案例。你要是搞过机器学习或者大数据,理解起来会挺顺的。
另外,它还总结了基于大数据的检测优缺点,像能力强、
统计分析
0
2025-06-16
高维数据中的异常检测-综述异常检测方法
高维数据的异常探测方法由Aggarwal和Yu (SIGMOD’2001)提出。该方法将高维数据集映射到低维子空间,通过评估子空间中数据的稀疏性来识别异常数据。
算法与数据结构
14
2024-07-22
基于数据挖掘的网络异常检测系统设计与实施
入侵检测技术是网络安全的核心,随着网络带宽流量的增加,快速检测成为入侵检测系统的重要需求。Snort入侵检测系统通过数据抓取和规则匹配来判断是否遭受攻击,规则质量直接影响系统性能。结合数据挖掘技术,设计并实现基于关联规则的分析器插件,以增强Snort对入侵的识别能力。利用Apriori算法挖掘Snort生成的告警日志,探索潜在的攻击模式,并将关联规则转化为Snort规则。通过SYN Flood攻击测试规则的增强,改进后的Snort系统显著提高了对SYN Flood攻击的检测效率。
数据挖掘
10
2024-09-21
基于Spark和K-means聚类的电力系统异常数据识别方法
基于 Spark 的并行 K-means 聚类,挺适合用来识别电力系统里那些“看起来不太对劲”的数据。原理不复杂,说白了就是拿负荷曲线来做聚类,看哪些数据落在奇怪的位置上。用的是 Spark 的并行能力,大数据集比 MapReduce 灵活多了,尤其是迭代多的时候,效率高不少。
电力系统的数据那叫一个多又杂,尤其是做状态估计的时候,不干净的数据会直接影响计算结果。用 K-means 来分类,再结合 Spark 跑并行任务,速度还挺快的,实验用的还是 EUNITE 的真实负荷数据,实战味道足。
这个方法最妙的地方是:能跑得快,跑得稳,还能跑在集群上。尤其适合那种数据量上亿、每天都在变的系统。要是
spark
0
2025-06-10
基于Spark和Hive的交通智能分析系统
这是一个毕业设计项目,包含经助教老师测试通过的课程设计和项目源码。系统运行稳定,欢迎下载交流。请下载后首先查阅README.md文件。
spark
17
2024-07-13