构建商品推荐系统,利用协同过滤算法,根据用户画像及购买历史,推荐相关商品,为用户提供个性化购物体验。
协同过滤商品推荐系统
相关推荐
Spark协同过滤推荐系统
基于 Spark 的电影推荐系统.zip 是个还不错的资源,适合想深入了解推荐系统原理、顺便动手练练 Spark 的你。讲得挺系统,从数据清洗、模型训练到实时推荐都有覆盖。用的核心是协同过滤,算是推荐算法里比较经典的做法。Spark 的 MLlib用起来还蛮顺的,大规模评分数据也不在话下。整体思路清晰,代码也不复杂,跑通之后你会对推荐系统的实现有个比较扎实的理解。评分数据预部分讲得挺细,比如怎么用DataFrame缺失值、转时间戳。完了就可以搞User-Based CF或者Item-Based CF,两种方式都提到了,配合实际需求灵活切换就行。训练环节支持调参数,比如相似度怎么选、邻居数 K设
spark
0
2025-06-10
Spark协同过滤实时电影推荐系统
基于 Spark 的推荐系统源码挺适合做复杂项目练手的,整个架构比较完整,前后端全链路基本都覆盖到了。前端用的是AngularJS 2,虽然版本偏早,但上手快,逻辑清晰。
推荐逻辑用的是协同过滤算法,比如 ALS 和 LFM 这些老牌选手,搭配深度学习的监督学习方法,还加了梯度下降来调优效果。你要是想搞清楚推荐背后的逻辑,看看这个项目挺合适。
MongoDB存储用户和电影数据,Redis负责缓存热点内容,响应也快。ElasticSearch搞全文搜索,那种“你喜欢”式的推荐查找就靠它了。搜索结果出来得挺快,不用担心卡顿。
数据流用的是Kafka,缓存消息挺稳的。Flume搞日志采集,Spark
spark
0
2025-06-13
Hadoop大数据协同过滤推荐系统
基于 Hadoop 的大数据项目,协同过滤算法做得还挺实在的。数据量一大,传统方法容易卡壳,用上 Hadoop 的分布式就顺多了,MapReduce 的任务拆分也挺清晰。你如果搞过新闻推荐场景,应该能体会到用户兴趣变化快,这套思路能动态适配,挺贴地气的。
新闻平台的实时推荐,靠的就是协同过滤里的“你喜欢的别人也喜欢”。项目用的是UserCF和ItemCF的混搭,既考虑用户行为,也兼顾内容相似度,推荐出的结果更靠谱。系统构建上,Hadoop配合MapReduce任务流转,整个流程压测下来还挺稳。
另外,这项目不仅仅是代码,文档也比较全,像如何清洗新闻数据、怎么划分训练集测试集、权重怎么调,都说得
Informix
0
2025-06-16
基于ItemCF协同过滤与Hadoop MapReduce的商品推荐系统资源下载
基于ItemCF协同过滤与Hadoop MapReduce的商品推荐系统资源下载。使用ItemCF进行协同过滤的商品推荐系统。步骤1:运行配置和路径;步骤2:格式化和去重;步骤3:计算得分矩阵;步骤4:计算同现矩阵;步骤5:矩阵相乘;步骤6:排序推荐。详细操作请查看Github链接:https://github.com/huangyueranbbc
Hadoop
11
2024-07-17
K12学习平台协同过滤推荐系统
平台上的个性化推荐功能简直是神技,利用大数据学习者的行为,推荐的资源精确到让人惊讶。你会觉得,怎么做到这么精准呢?其实就是通过知识图谱与协同过滤推荐算法的结合,利用学生的学习数据为其量身定制学习资源。这种方式有效避免了资源过载和学习迷航的问题,不仅提升了学习体验,还能大幅提升学习效果。更重要的是,平台的推荐准确率已经突破了 90%,让学生真的可以按自己的节奏高效学习。你如果也想了解如何实现类似的推荐系统,可以参考这些相关资源哦。
数据挖掘
0
2025-06-15
基于Django框架的图书推荐系统(整合协同过滤算法)
确保图书推荐系统在运行时能够顺利工作。
MySQL
13
2024-07-19
Spark MLlib协同过滤推荐实战:Python实现ALS算法
基于Spark Yarn-Client模式的ALS推荐算法实战
本实例演示如何使用Python和Spark MLlib库构建协同过滤推荐系统。算法核心采用ALS(交替最小二乘法),并以Yarn-Client模式部署在Spark集群上。
项目包含:
完整可运行的Python代码
用于训练模型的示例数据集
代码结构解析:
数据加载: 从本地或分布式存储系统加载用户-物品评分数据。
模型训练: 使用ALS算法训练协同过滤模型,并设置相关参数,如隐式因子数量、正则化参数等。
推荐生成: 利用训练好的模型预测用户对未评分物品的评分,并推荐评分最高的物品。
模型评估: 使用评估指标,如均方根误差 (
spark
19
2024-04-30
协同过滤RMSE计算代码
协同过滤的 RMSE 计算代码其实蛮简单易懂的。如果你正在学习 Python,想了解机器学习和推荐系统的基础,完全可以参考这个源码。它的实现不复杂,操作起来也顺手,挺适合初学者。计算 RMSE 是评估推荐系统性能的一个常用方法,代码展示了如何基于协同过滤实现这一过程。通过这个代码,能帮你更好地理解推荐系统的工作原理,尤其是如何评估推荐的准确性。
如果你对协同过滤算法有兴趣,其他相关文章也挺值得一看。比如,关于 Spark 的协同过滤实现,或者基于 Django 框架的图书推荐系统,这些都能给你更深入的视角和实践经验。
另外,协同过滤算法的应用可不止在推荐系统,电商平台、视频推荐等都有广泛应用。
算法与数据结构
0
2025-06-14
基于类别偏好Canopy-K-means的推荐系统协同过滤算法
协同过滤算法(CF)在推荐系统中面临数据稀疏性和可伸缩性问题。提出了基于类别偏好Canopy-K-means的协同过滤算法(CPCKCF),定义了用户项类别偏好比率(UICPR)并计算UICPR矩阵。CPCKCF算法以Canopy算法为前置步骤,并将其输出作为K-means算法的输入,用于用户数据的聚类和近邻用户预测得分。实验结果基于MovieLens数据集显示,与传统基于用户的协同过滤算法相比,CPCKCF算法提高了计算效率和推荐精度约2.81%。
数据挖掘
14
2024-08-16