MNIST 数据集的 GIST 特征实验代码,融合了Matlab和PyTorch,还用上了XGBoost、LDA、QDA这些经典模型。GIST 这玩意儿,能从整体上提取图像信息,挺适合搞分类的,尤其是图像不复杂但需要提炼特征的任务。代码整理得比较清楚,注释也够用,适合拿来改一改、用一用。
用param.imageSize = [28 28]
这种参数设置方法,在 Matlab 里跑起来也不麻烦,响应挺快的,想复现基本不踩坑。
Matlab精度检验代码MNIST GIST图像分类实验
相关推荐
Matlab 中 KNN 代码实现:Mnist 和 Cifar-10 图像分类
这是一个 EE369 项目,用 Matlab 实现了五种分类器:KNN、线性 SVM、核 SVM、Fisher 线性判别和核 Fisher 判别,用于对 CIFAR-10 和 MNIST 图像数据集进行分类。
文件说明:
init.m: 在测试 CIFAR-10 之前必须先运行此文件!它包含 VLFeat 特征提取库的代码。
train.m: 为 CIFAR-10 选择分类器并训练模型。
classify.m: 为 CIFAR-10 选择分类器并进行分类。
localtest.m: CIFAR-10 的主程序,在此运行 CIFAR-10 分类。
localtest2.m: MNIST 的主程
Matlab
18
2024-05-21
Matlab 场景分类项目精度检验代码
该项目基于 James Hays 教授在 2013 年秋季“场景识别”课程中的演讲内容,利用多种特征提取技术,对包含 15 个类别、每类 100 张图像(共计 1500 张图像)进行分类。项目运行步骤:1. 从 CS143 页面获取框架项目,并将数据文件夹复制到该项目的工作目录中。2. 项目需要 VLFeat 和 Matlab 图像工具箱,安装 VLFeat 后,需将 proj3.m 文件中的 run('~/Documents/MATLAB/vlfeat-0.9.19/toolbox/vl_setup') 行替换为实际路径。3. 运行 proj3.m 文件,项目将对 data/test 目录中
Matlab
12
2024-05-21
Statlie图像处理器的高光谱图像分类基于并行神经网络的MATLAB精度检验代码
Statlie图像处理器描述了BASS(Band-Adaptive Spectral-Spatial)架构,这是一种用于高光谱图像分类的并行深度神经网络系统。该项目由印度技术学院的研究人员提出,应对高光谱图像长时间训练和推理所带来的能耗挑战。BASS-Net已使用TensorFlow和Keras重新实现,并针对FPGA进行了优化,使用NVIDIA TitanX GPU进行训练。这些技术改进显著减少了处理时间和能耗。未来,该技术可能扩展至自然语言处理和系统验证领域。
Matlab
17
2024-07-22
音乐体裁分类器Matlab精度检验代码
音乐分类涉及主观流派,随着互联网和多媒体系统的发展,音乐信息检索应用需求增加。本Web应用基于Django框架和Python开发,使用Poly Kernel SVM进行音乐流派分类。安装要求包括Django(1.11)、Scikit-Learn(0.18.1)、Scipy(0.19.0)等。
Matlab
16
2024-08-09
图像分类方法
空间金字塔模型对图像进行划分,分别提取各子块特征,赋予不同权重。三层模型下,划分等级0权重1/4,等级1权重1/4,等级2权重1/2。该模型有效描述图像的空间信息。
数据分类算法包括最大熵、支持向量机、朴素贝叶斯、决策树等。
数据挖掘
18
2024-04-30
MATLAB精度检验代码-DNB改写优化
MATLAB精度检验代码-DNB是一种用于评估和比较基于任务的功能磁共振成像去噪方法的框架。其性能指标为交叉验证的准确性,通过评估对任务相关响应的估计来评估预测滞后数据的准确度。DNB包括MATLAB编写的三大组件:fMRI数据(适用于21个数据集)、自动评估去噪方法的代码框架以及多种去噪方法的实现。要使用DNB,请将其添加到MATLAB路径中(addpath('DNB')),然后转到DNB目录并运行示例脚本。详细信息请参阅使用条款。
Matlab
12
2024-07-29
MATLAB精度检验代码和检索实践项目代码
此存储库包含检索练习项目的主要脚本。这些脚本经过MATLAB 2016a测试,需要ExampleData文件夹中的数据。运行脚本前,需将Dependencies文件夹添加到MATLAB中。
Matlab
15
2024-04-29
高光谱遥感图像分类MATLAB项目
高光谱图像分类的 Matlab 项目,挺适合拿来快速上手的。
PCA 降维配上SVM 分类的组合,老搭档了,高光谱这种几百波段的数据还挺高效。每个像素都一堆光谱值,用 PCA 一压缩,信息还在,复杂度就下来了。
SVM就不用说了,分类效果比较稳,是你样本不多、数据维度还高的时候。项目里还支持调核函数参数,RBF、linear这些常见的都有,想试试哪个都方便。
最省事的是它还带了个GUI 界面,不写代码也能跑流程。比如选训练样本比例、调参数、点下按钮就能跑模型、看分类图,体验还不错,适合想先搞懂流程的你。
项目用的是MATLAB,对遥感数据支持还蛮全的。你可以用这个做土地覆盖分类,看看植被长势,
Matlab
0
2025-06-15
matlab精度检验代码-countingAMDCN实现的图像对象计数卷积神经网络
这是一个包含AMDCN(聚合的多列膨胀卷积网络)实现的存储库,专用于图像中对象的计数任务。AMDCN的架构由五个平行的列组成,每列通过扩张卷积和一个最终的聚合器生成特征,输出最终的密度图。网络在UCSD、UCF50和TRANCOS数据集上的输出示例展示了其在人群和交通数据集上的应用。
Matlab
7
2024-07-26