多旅行商问题的遗传算法实现,真的是蛮适合喜欢折腾路径规划的朋友。用的是 Matlab 开发,逻辑比较清晰,配置参数也够灵活,比如NSALESMEN
控制推销员数量,POPSIZE
调人口规模。你只要把城市坐标或距离矩阵输进去,运行几轮迭代,马上就能看到一个还不错的近似最优解。挺适合做算法实验或者搞科研的同学参考。
多重旅行推销员问题遗传算法求解Matlab实现
相关推荐
遗传算法旅行商问题求解
遗传算法的旅行商问题实现,写得还挺清晰的,思路也蛮完整。用 Matlab 搞过 TSP 的朋友应该知道,城市一多起来,手动排路径基本不,这种进化式思路就挺合适了。代码里从初始化种群到交叉、变异、适应度评估都有,而且注释也算良心,看着不累。
路径编码用的是蛮直观的城市序列,比如[1, 5, 3, 2, 4, 1],代表从 1 出发,按这个顺序转一圈再回来。你要是第一次玩遗传算法,也不用慌,结构清晰、模块划分也明白:初始种群、交叉、变异都在自己的函数里。
适应度函数设计得也靠谱,反比于路径长度,这样距离越短适应度越高。轮盘赌和锦标赛两种选择机制也都兼顾到了,可以按需切换,挺灵活的。交叉操作用了部分
算法与数据结构
0
2025-06-30
基于遗传算法的旅行商问题求解
该项目利用遗传算法解决旅行商问题,目标是在给定的30个城市(经纬度已提供)中找到最短路径。用户可以自定义调整重组概率、变异概率以及迭代次数,以优化算法性能。
算法与数据结构
18
2024-05-12
模拟退火算法与改进遗传算法求解旅行商问题及Matlab实现
本资源探讨利用模拟退火算法和改进的遗传算法解决旅行商问题,并提供在Matlab环境下的实现方法。
Matlab
13
2024-05-12
基于MATLAB GUI的遗传算法多旅行商问题求解
本视频提供了一种基于MATLAB图形用户界面(GUI)的遗传算法(GA)来解决多旅行商问题(MTSP)。该算法适用于多个起始点和不同终点的场景。视频中包含了详细的代码和运行说明,便于理解和使用。
Matlab
13
2024-05-30
旅行商问题的遗传算法优化及其Matlab实现
Matlab编程实现了旅行商问题的优化解决方案,采用遗传算法进行效率提升。该方法通过遗传算法迭代优化旅行路径,以求得最优解。
Matlab
17
2024-09-28
遗传算法TSP问题求解
基于遗传算法的 TSP 问题求解,你会发现这段代码挺有意思的。遗传算法通过模拟自然选择来优化解答,的正是著名的旅行商问题(TSP)。用Matlab实现起来也不复杂,代码清晰易懂,适合对优化算法有兴趣的朋友。通过调整算法的选择、交叉、变异等操作,你能有效地找到问题的最优路径。我,这种算法不仅能让你在学术研究中大显身手,也适合应用在实际的路径规划中。如果你正在找相关资源,这些链接可以给你带来一些灵感:简单遗传算法 TSP 问题的 Matlab 实现MATLAB 实现遗传算法与模拟退火算法 TSP 问题Matlab TSP 问题代码优化遗传算法超启发式方法【旅行商问题】使用遗传算法 TSP 问题 m
Matlab
0
2025-06-24
推销员问题MATLAB入门课件第9讲行遍性问题
推销员问题的 MATLAB 入门课件,第 9 讲讲得挺有意思,主要围绕经典的旅行商问题(TSP)展开。城市用顶点表示,道路就是边,边上的数值可以是距离、时间或者费用。目标嘛,就是走一圈把每个城市都走一遍,还得回原点,而且整个路程得尽量短。
旅行商问题是那种你一听就懂,但真做起来挺折腾的类型。用加权图来模拟城市之间的关系,算法怎么走、走哪条最划算,就是核心难点了。尤其你如果做路径规划或者调度优化的开发,肯定绕不开它。
如果你平时用 MATLAB 比较多,这一讲的课件还挺值得看下。它把理论讲得比较清楚,还给了实际的建模思路。配合后面的案例,比如MATLAB 求解案例或者模拟退火算法优化路线,都实用
Matlab
0
2025-06-29
MATLAB实现遗传算法的优化求解
遗传算法(Genetic Algorithm, GA)是一种模拟生物进化过程的优化方法,由John Holland在20世纪60年代提出。在MATLAB中,利用其强大的数值计算和编程环境,可以轻松实现遗传算法来解决各种优化问题,如函数最优化、参数估计和组合优化等。详细介绍了遗传算法的基本概念,包括种群、个体、编码方式、适应度函数以及选择、交叉和变异等操作步骤。MATLAB的Global Optimization Toolbox提供了内置的ga函数,用户可以根据具体问题设定种群大小、交叉和变异概率等参数,快速求解优化问题。
spark
12
2024-07-30
MATLAB解决多旅行商问题的遗传算法
介绍了一种使用遗传算法解决多旅行商问题(MTSP)的MATLAB程序。该程序分别应对了五种情况:1. 不同起点出发回到起点(固定旅行商数量);2. 不同起点出发回到起点(根据计算可变的旅行商数量);3. 同一起点出发回到起点;4. 同一起点出发不回到起点;5. 同一起点出发回到不同终点(与起点不同)。这些算法能有效地解决复杂的旅行商问题,展示了MATLAB在优化领域的强大应用。
Matlab
10
2024-07-20