本代码利用已训练的BP神经网络模型文件 (ANN.mat) 对新的数据集进行预测,计算预测值与真实值的均方误差,并绘制两者对比图以可视化预测结果。
基于预训练模型的BP神经网络数据预测
相关推荐
BP神经网络在Venice Lagoon数据预测中的应用问题
菜鸟初次接触BP网络预测问题-Venice Lagoon数据1993.txt,请帮助检查程序,预测结果不理想,请求各位大侠指点,非常感谢!要求利用前23个数据预测第24个数据,共有200组数据。输入数据为23200,输出数据为1200。尽管测试数据相同,但预测结果却出现显著错误,请帮忙查明问题所在。详细的样本数据附在文中。
Matlab
17
2024-07-28
MATLAB BP神经网络股票预测模型
基于 MATLAB 的 BP 神经网络股票预测项目,真的是一个挺实用的案例。用熟悉的工具,做点靠谱的预测,整个流程也比较清晰,从数据预到模型优化,全都涵盖了。如果你也在做金融相关的模型,用它练练手蛮合适。
MATLAB 的 BP 神经网络股票预测项目,整体结构算是比较完整的。从数据整理开始,比如收盘价、交易量那些,先来一波标准化,清洗干净后喂给网络,学习起来效率高,准确率也更稳。
输入层对应各类股票指标,输出层直接给出预测结果,中间的隐藏层就靠你来调参了,节点多了学得细,少了速度快。你可以先少来几层试试看,响应也快。
训练部分用的是经典的反向传播机制,误差一出来立马回头修正。用train函数跑
Matlab
0
2025-06-26
Matlab基于BP神经网络的煤炭需求预测模型研究
Matlab技术基于双隐层BP神经网络,针对中国煤炭需求进行了模拟分析和预测,通过实际数据验证和分析,预测了未来五年的煤炭需求量。探讨了影响煤炭需求的复杂因素及其非线性关系,提出了一种基于神经网络的高精度预测方法,为煤炭资源管理提供了重要决策支持。
Matlab
9
2024-07-30
BP神经网络详解神经网络数学模型解析
神经网络是由许多神经元之间的连接组成,例如下图显示了具有中间层(隐层)的B-P网络。BP神经网络是一种数学模型,其详细解析如下。
算法与数据结构
10
2024-07-17
BP神经网络训练详解与实例解析
3. 神经网络的训练
3.1 训练BP网络
训练BP网络的过程是通过应用误差反传原理不断调整网络权值,使得网络模型输出值与已知的训练样本输出值之间的误差平方和达到最小或小于某一期望值。虽然理论上已证明:具有1个隐层(采用Sigmoid转换函数)的BP网络能够实现对任意函数的任意逼近,但迄今为止仍没有构造性结论说明如何在给定有限个训练样本的情况下,设计一个合理的BP网络模型,并通过学习达到满意的逼近效果。因此,建立合理的BP神经网络模型的过程,在国外被称为“艺术创造的过程”,是一个复杂而又十分烦琐的挑战。
算法与数据结构
10
2024-10-31
BP神经网络训练过程应用0.9
BP 网络的训练过程,最怕的就是调来调去没效果。下面这几个资源,真的是蛮靠谱的,适合你想快速搞懂或者拿来改的场景。代码清晰、思路完整,适合初学者也适合老手临时用一用。BP 神经网络的结构其实不难,输入层、隐藏层、输出层那一套,难的是调参和收敛速度的问题。这篇对整体机制讲得比较细,顺着思路一步步走,容易上手。
你要是像我一样懒得从头搭,直接去看MATLAB 代码示例,不少地方还能直接改数据就跑了,挺方便的。尤其是训练误差那块的展示,效果图直观,能节省不少调试时间。
嗯,想在 Matlab 里自己实现一遍?这个资源对函数调用和流程得挺清楚。像train、sim这些核心函数都有实际应用,改起来也比较
Access
0
2025-06-25
Matlab实现BP神经网络预测程序
BP神经网络是一种常用的神经网络算法,可解决各种复杂问题。在Matlab中,我们可以编写BP神经网络预测程序。以下是一个示例代码:首先,创建一个新的前向神经网络net_1:matlab net_1 = newff(minmax(P), [10, 1], {'tansig', 'purelin'}, 'traingdm');设置训练参数如下:matlab net_1.trainParam.show = 50; net_1.trainParam.lr = 0.05; net_1.trainParam.mc = 0.9; net_1.trainParam.epochs = 10000; net_1.
Sybase
18
2024-07-13
BP神经网络
BP神经网络的MATLAB代码实现展示了其基本的架构和训练过程。首先,定义网络结构,包括输入层、隐藏层和输出层的神经元数量。其次,初始化权重和偏置,然后通过前向传播计算输出,使用误差反向传播算法调整权重和偏置。最后,通过多次迭代训练网络,直到误差满足要求。该代码适用于简单的分类和回归任务,具有较好的学习能力和泛化性能。
算法与数据结构
18
2024-07-12
改进后的BP神经网络模型
主要借鉴了Matlab程序,对BP神经网络模型进行了改进和优化。
Matlab
15
2024-08-23