使用Flink SQL实现电商用户行为实时分析
将利用Kafka、MySQL、Elasticsearch和Kibana,使用Flink SQL构建一个实时分析电商用户行为的应用。所有的实战演练将在Flink SQL CLI中进行,完全基于SQL文本,无需编写Java或Scala代码,也无需安装IDE。实验的最终成果将展示在中。
flink
12
2024-08-30
构建大数据Druid集群的实时分析平台
Druid是一款用于大数据实时分析的平台,能够处理大规模数据的实时查询和分析需求。详细的搭建步骤包括准备环境,安装依赖项如最新版imply-2.4.8、JDK 1.8和Node.js,配置Druid扩展和Deep Storage,以及设置数据查询Web界面和Zookeeper、Kafka集群连接信息。Druid支持多种数据源,包括mysql、kafka等,具备强大的实时查询和分析能力。
Storm
7
2024-09-13
社交网络分析中的聚类算法社区发现与行为模式分析
社交网络中的聚类算法,其实就是通过对网络中的个体或群体进行分组,从而揭示网络的结构和潜在的行为模式。比如,聚类算法在发现社交网络中的社区时有用,能让看到哪些用户关系比较紧密。你知道吗,它还能用于用户行为模式,从而预测未来的社交趋势。像是通过聚类,可以将社交网络中的用户按互动强度分为不同的群体,进而为精准营销数据支持。通过聚类算法,社交网络变得更加有条理,更容易挖掘出有价值的信息,真是研究社交网络必备的工具之一。
算法与数据结构
0
2025-06-11
机票购买平台
ASP.NET文件在vs2010中打开网站即可,然后将APP_DATA文件连接到本地sql server即可开始运行。
SQLServer
11
2024-07-24
Impala实时用户行为分析引擎
Impala 是个给力的工具,专门为大数据设计的。它能在大规模数据集上进行低延迟的 SQL 查询,适合用来做实时用户行为。如果你有用户行为数据,比如网页点击流、APP 交互之类的,Impala 可以帮你快速查询和这些数据,你做出更快速、精准的业务决策。举个例子,想要实时追踪用户的浏览路径、停留时间,Impala 起来流畅。适合用在需要快速响应的场景,比如优化产品体验或者做个性化营销。嗯,Impala 的查询性能相当高,背后是通过内存计算避免了磁盘 I/O 的延迟,速度相当快。而且它支持 SQL 语法,操作起来和传统数据库差不多,基本不需要额外学习啥新语言,挺方便的。
Hive
0
2025-06-13
基于Kettle+Clickhouse+Superset打造大数据实时分析平台
本课程结合Kettle、Clickhouse和Superset三大开源工具,构建一个高效的实时数据分析平台。课程以互联网电商实际业务为案例,详细介绍了数据处理的各个环节,包括流量分析、新增用户分析、活跃用户分析、订单分析和团购分析。这个平台不仅能够处理海量数据,还支持PC、移动和小程序端的数据分析需求。
flink
15
2024-08-09
Matlab EDGARAnalytics数据工程挑战实时解析SEC EDGAR行为日志
matlab 的字符接收逻辑代码,配合 SEC 的 EDGAR 数据做实时,思路还挺有意思的。项目整体像是个小型的数据工程挑战:从日志中提取用户访问行为、统计停留时间,再实时展示在仪表盘上,过程其实挺锻炼数据链路搭建的。代码以 Matlab 为主,但如果你熟悉 Kafka 或者 Logstash 一类的工具,理解起来会更快。
EDGAR 的网络日志记录了 IP、时间、访问文档等信息。你要做的,是实时接收这些日志流,出每个用户的访问会话。听起来像在做行为埋点?嗯,差不多。只不过源数据不是你的网站,而是美国证券交易委员会。
你可以用Matlab的字符能力来解析日志流,比如用fscanf或fgets
Matlab
0
2025-06-17
社交网络数据挖掘与分析
社交网络数据挖掘与分析是指运用数据挖掘技术从社交网络数据中提取有价值信息的过程。社交网络平台积累了海量用户数据,包括用户个人信息、社交关系、兴趣爱好、行为轨迹等。通过数据挖掘技术,可以发现用户行为模式、社交网络结构特征、信息传播规律等,为用户画像、精准营销、舆情监测等应用提供数据支持。
社交网络数据挖掘与分析主要涉及以下几个方面:
数据收集: 从社交网络平台获取原始数据,例如用户帖子、评论、点赞、转发等。
数据预处理: 对原始数据进行清洗、转换、整合,使其符合数据挖掘算法的要求。
特征提取: 从预处理后的数据中提取有价值的特征,例如用户活跃度、影响力、情感倾向等。
数据分析: 运用数据挖掘算
数据挖掘
10
2024-05-31