Bigflow 是百度自主研发的,专为大数据处理而设计的统一分布式计算框架。该框架简化大规模数据处理流程,并为用户提供高效、可靠的数据分析能力。
百度Bigflow: 面向大数据处理的统一分布式计算框架
相关推荐
Hadoop 2.2.0分布式计算框架
Hadoop 2.2.0 的源码包,真的是大数据开发的宝藏。YARN 的引入,让它不再只是跑 MapReduce 的老框架,资源调度这块灵活多了,开发 Spark、Tez 这些框架都更方便。源码读起来比较清晰,架构划分也明确,像是ResourceManager、NodeManager、ApplicationMaster这些核心组件都能看出思路。尤其是对 HDFS 和 MapReduce 底层感兴趣的,建议从它开始研究,能学到不少分布式设计的干货。对了,HA 支持也在里面,想搞高可用的别错过 ZKFC 的实现。
Hadoop
0
2025-06-24
Hadoop 1.0.1分布式计算框架
Hadoop 1.0.1 的HDFS和MapReduce在大数据领域还是挺有分量的。这款版本为你了一个可靠、可扩展的分布式计算框架,适合做大规模数据。HDFS负责存储,它有高容错性、流式数据访问,还有超级强的吞吐量。而MapReduce则通过将任务拆分为 Map 和 Reduce 两阶段,让数据变得高效。你可以想象一下,海量数据时,它让整个过程变得简单多了。,Hadoop 还包括一些其他不错的工具,比如YARN和ZooKeeper,这些都是分布式系统中必不可少的伙伴。Hadoop 1.0.1 是它发展过程中的重要一环,虽然现在已经有新版本了,但它还是奠定了大数据框架的基础。如果你对分布式计算感
Hadoop
0
2025-06-13
大数据与Hadoop分布式计算框架
大数据的核心技术,**Hadoop**,真的是越来越火了。它是一个开源的分布式计算框架,能够超大规模的数据集,几乎所有的大型企业都在用它。其实它的生态系统挺丰富的,从**HDFS**到**MapReduce**,都能你高效地存储和数据。而且像**EMC**、**Microsoft**、**Intel**等大公司都在持续加大投入。嗯,是如果你涉及到海量数据的存储和,Hadoop 的优势你绝对不能忽视。你如果想入手,可以参考一下这些实用的链接,都是一些不错的入门和进阶资源,能帮你快速上手。
Hadoop
0
2025-06-24
Hadoop 2.7.2分布式计算平台
Hadoop 2.7.2 的完整安装包,适合在 CentOS 上练手的那种,配置文件啥的都带了,省去你一顿百度的麻烦。嗯,里面的东西挺全,像HDFS、MapReduce、YARN这些核心组件都有。
分布式存储的 HDFS,其实就是把大文件切成块,丢到不同机器上,速度快,还不容易挂。你可以设定副本数,防止机器挂了数据丢了,挺稳的。
MapReduce的方式也比较直白,写个 WordCount 脚本就能跑起来了,统计个文本词频,适合用来测试集群是不是正常。逻辑也不复杂,一个 map 一个 reduce,熟悉一下思路就行。
还有YARN,算是资源调度大管家吧,容器分配、作业调度全靠它,尤其在多节点测
Hadoop
0
2025-06-29
Apache Spark 3.4.3分布式计算引擎
内存计算的 Spark 引擎,大数据是真的快。用的是Scala写的,操作分布式数据集就像本地集合那样简单直观。相比Hadoop MapReduce,它支持数据保存在内存中,省去反复读写磁盘的烦恼,跑迭代算法(比如机器学习)合适。对于做分布式计算的你来说,Spark 算是比较成熟的方案了。不只是性能好,生态也挺全,支持SQL 查询、图计算、流式,你想要的场景基本都能覆盖。安装包是spark-3.4.3-bin-hadoop3.tgz,打包好了的,拿来就能用。你用./bin/spark-shell一跑,立刻进 REPL 环境,测试点数据分分钟出结果。注意哦,虽然 Spark 自带了本地模式,但如果
spark
0
2025-06-16
Spark分布式计算框架
Spark是一种高效的开源集群计算系统,专为大规模数据处理而设计。它提供了一个快速灵活的引擎,用于处理批处理、交互式查询、机器学习和流式计算等多种工作负载。
Spark核心特性:
速度: Spark基于内存计算模型,相比传统的基于磁盘的计算引擎(如Hadoop MapReduce),速度提升可达100倍。
易用性: Spark提供简洁易用的API,支持多种编程语言,包括Scala、Java、Python和R。
通用性: Spark支持批处理、交互式查询、机器学习和流式计算等多种工作负载,提供了一个统一的平台来处理各种大数据需求。
可扩展性: Spark可以在数千个节点的集群上运行,能够处理P
spark
11
2024-06-22
深入解析分布式计算框架
分布式计算框架剖析
分布式计算框架作为处理大规模数据和复杂计算任务的关键技术,其重要性日益凸显。通过将任务分解并分配到多个计算节点上并行执行,分布式计算框架有效地提升了计算效率和处理能力。
常见的分布式计算框架
Hadoop: 开源框架的先驱,以其分布式文件系统 HDFS 和分布式计算模型 MapReduce 而闻名。
Spark: 基于内存计算的通用框架,适用于批处理、流处理、机器学习等多种场景。
Flink: 专注于流处理的框架,提供低延迟和高吞吐量的数据处理能力。
框架核心要素
资源管理: 高效地管理集群资源,包括 CPU、内存、存储等,以确保任务的合理分配和执行。
任务调度:
spark
13
2024-04-29
Fourinone 分布式计算框架解析
Fourinone 是一款基于 Java 的开源分布式计算框架,简化分布式环境下的应用程序开发。其核心原理在于将计算任务分解成多个子任务,并将其分配到集群中的不同节点上并行执行,最终将计算结果汇总以获得最终结果。
Fourinone 的架构主要包含以下几个关键组件:
Worker: 负责执行具体的计算任务,多个 Worker 可以并行工作以提高计算效率。
ParkServer: 负责管理 Worker 节点,接收来自 Client 的任务请求,并将任务分配给空闲的 Worker 执行。
Client: 用户提交任务的客户端,负责将任务发送到 ParkServer,并接收计算结果。
Four
算法与数据结构
11
2024-05-30
Spark 分布式计算框架指南
本指南涵盖 Apache Spark 核心模块、SQL 处理、流式计算、图计算以及性能调优与内核解析等方面。内容面向希望学习和应用 Spark 进行大数据处理的用户,提供从入门到实战的全面指导。
主要内容包括:
Spark 核心概念与编程模型: 介绍 Spark 的基本架构、RDD、算子以及常用 API。
Spark SQL 数据处理: 讲解 Spark SQL 的数据抽象、查询优化以及与 Hive 的集成。
Spark Streaming 实时流处理: 探讨 Spark Streaming 的架构、DStream API 以及状态管理。
Spark GraphX 图计算: 介绍 Spa
spark
9
2024-05-29