实现梯度下降法的 Matlab 程序,需要输入具体参数。
梯度下降法 Matlab 程序
相关推荐
利用梯度下降法进行回归分析
梯度下降法是一种优化算法,用于寻找系统模型中系数的最佳值。通过迭代过程,算法调整系数,最小化目标函数,通常是平方误差函数。展示了使用梯度下降法对随机生成的数据进行建模的具体实现。此外,我们探索了不同学习率技术对模型拟合效果的影响。
Matlab
12
2024-05-31
Matlab最速下降法实现
这篇博客详细介绍了如何在Matlab中实现最速下降法,涵盖了实例和完整代码。想要深入了解具体内容,请访问个人博客。
Matlab
11
2024-08-28
用Matlab实现最速下降法
这是一个Matlab编写的最速下降法程序,非常实用。
Matlab
7
2024-07-30
最速下降法的Matlab实现示例
这是一个演示如何在Matlab中实现最速下降法的例子,其中函数为fx=X(1)^2-10cos(2piX(1))+10+X(2)^2-10cos(2piX(2))+10+X(3)^2-10cos(2pi*X(3))+1。
Matlab
15
2024-09-13
最速下降法在MATLAB中的实现
最速下降法是一种优化算法,主要用于求解无约束优化问题。在MATLAB中,最速下降法通过迭代方式更新解,逐步逼近最优解。具体步骤包括:
选择初始点。
计算目标函数的梯度。
更新解的方向为负梯度。
进行线搜索以找到合适的步长。
重复以上步骤直到收敛。
Matlab
14
2024-10-31
期权Matlab算法实现随机梯度下降SGD
介绍了在Matlab中使用随机梯度下降(SGD)算法优化期权预算的方法。该方法是基于L. Bottou的SGD和Inria的JSGD的变体,允许用户通过接口选择任意目标函数进行优化(类似于Schmidt的minFunc)。提供的源代码和示例展示了如何使用softmax目标函数进行实现。相比于传统的梯度下降(GD)方法,SGD能够更有效地处理大规模数据集,并减少计算梯度的负担。
Matlab
14
2024-08-12
使用最速下降法求解多变量函数
此代码示例展示了如何使用最速下降法求解多变量函数的最小值。代码中包含一个示例函数 -(3x1+x2+6x1x2-2(x1^2)+2*(x2^2)),并展示了如何计算其Hessian矩阵、梯度和特征值。代码还演示了如何迭代找到函数最小值,并在每次迭代中更新变量的值。
Matlab
10
2024-05-16
控制器参数优化——应用坐标下降法
H. K. Ameer, Z. L. Shao, S. Li, Q. X. Wang, and N. Guan,“哪种PID变体最适合气动软机器人?实验研究”,IEEE/CAA J. Autom. Sinica. matlab仿真C代码
Matlab
12
2024-07-31
Adam随机梯度下降优化算法在Matlab中的实现
fmin_adam是来自Kingma和Ba的Adam优化算法,它使用自适应学习率的梯度下降,并对每个参数单独应用Momentum。Adam设计用于解决随机梯度下降问题,适合在使用小批量数据估计每次迭代的梯度时,或在随机dropout正则化的情况下使用。有关用法,请参考以下格式:
[x, fval, exitflag, output] = fmin_adam(fun, x0, stepSize, beta1, beta2, epsilon, nEpochSize, options]
有关详细参考,请查看功能帮助。GitHub存储库中包含多个示例: [https://github.com/Dyla
Matlab
10
2024-11-04