基于 Flink 1.14.3 版本, 使用 Java 语言和 Maven 构建工具,演示如何从 Netcat 读取数据流,进行单词拆分和统计,最终输出结果。
Flink 1.14.3 实现 NC 数据流 WordCount 分析
相关推荐
JAVA大数据流处理Apache Flink示例代码.zip
在大数据处理领域,Apache Flink是一款强大的开源流处理框架,专为实时数据流和批处理而设计。这个名为\"JAVA大数据流处理Apache Flink示例代码.zip\"的压缩包很可能包含了一系列用Java编写的Flink示例代码,用于演示如何在实际项目中应用Flink技术。Flink的核心特性包括事件时间处理、窗口机制、状态管理和容错能力等。事件时间处理允许用户基于事件生成的时间来计算窗口,适应处理乱序数据的需求。窗口机制支持多种类型,如滑动窗口、会话窗口和tumbling窗口,根据事件时间或系统时间进行数据流的分组和聚合。状态管理确保在处理无界数据流时维持应用程序的一致性,支持检查点
flink
15
2024-07-15
基于Flink 1.14.3的大数据项目实战——详解Flink SQL流批一体技术
这是一门Flink SQL大数据项目实战课程,基于Flink 1.14.3版本。课程涵盖Flink Table编程、SQL编程、Time与WaterMark、Window操作、函数使用、元数据管理等核心内容,通过一个完整的实战项目深入讲解Flink SQL的流式项目开发。无论是零基础还是有基础的学员,都能通过本课程快速掌握Flink SQL流批一体技术,并积累实战经验。
flink
10
2024-08-02
处理Kafka数据流
使用Spark Streaming处理Kafka数据流时,需要将 spark-streaming-kafka-assembly_2.11-1.6.3.jar 添加到PySpark环境的 jars 目录中。该jar包提供了Spark Streaming与Kafka集成所需的类和方法,例如创建Kafka DStream、配置消费者参数等。
spark
11
2024-04-29
数据流驱动设计
数据流驱动设计
数据流驱动设计是一种软件设计方法,它以数据在系统中的流动和转换过程为核心。这种方法强调识别和定义数据流,并根据数据流的特点来构建系统架构和模块划分。
在数据流驱动设计中,系统被分解为一系列相互连接的处理单元,每个单元负责对数据进行特定的操作或转换。数据在这些单元之间流动,最终生成系统所需的输出。
这种设计方法特别适用于处理大量数据的系统,例如数据处理流水线、实时数据分析系统等。其优势在于能够清晰地展现数据的流动过程,方便理解和维护系统逻辑,同时也易于实现并行处理和优化性能。
spark
17
2024-05-15
Oracle数据流的设置
这是一个很好的解决方案,通过它可以实现Oracle数据的共享。
Oracle
9
2024-09-26
Apache Flink 流处理
Apache Flink 是一个开源框架,使您能够在数据到达时处理流数据,例如用户交互、传感器数据和机器日志。 通过本实用指南,您将学习如何使用 Apache Flink 的流处理 API 来实现、持续运行和维护实际应用程序。
Flink 的创建者之一 Fabian Hueske 和 Flink 图处理 API (Gelly) 的核心贡献者 Vasia Kalavri 解释了并行流处理的基本概念,并向您展示了流分析与传统批处理的区别。
flink
12
2024-05-12
Flink SQL大数据视频教程,基于Flink 1.14.3版本
学习Flink SQL,掌握2022最新大数据处理技术,教程基于Flink 1.14.3版本。
flink
21
2024-05-12
深入 PostgreSQL 数据流:pgstream 解析
pgstream:PostgreSQL 的数据流利器
pgstream 是 PostgreSQL 的一项扩展功能,它为数据库提供了强大的数据流处理能力。通过 pgstream,您可以:
实时数据接入: 将外部数据源(例如 Kafka、MQTT)中的数据实时接入 PostgreSQL,实现数据的实时分析和处理。
数据管道构建: 使用 SQL 或 PL/pgSQL 创建复杂的数据管道,对数据进行清洗、转换和聚合,并将结果输出到其他系统或存储中。
流式数据处理: 利用 pgstream 的高效数据处理能力,实现对大规模数据的实时分析和处理,例如实时仪表盘、异常检测等。
pgstream 提供了
PostgreSQL
10
2024-04-30
销售管理样品接单管理的数据流分析方法
在销售管理模块的样品接单管理流程中,系统将销售样品接单管理和销售样品单进行关联,确保管理流程高效、精准。通过系统可以将样品接单直接转换为标准BOM,此举能极大地提升企业新产品的维护速度与效率。相关的单据格式设置信息储存在Vouchers DEF_ID中,其中销售样品单主表对应ManageSample表,销售样品单子表对应ManageSamples,主表和子表数据的协同管理确保了信息的一致性与流转效率。
SQLServer
6
2024-10-28