This research focuses on developing novel algorithms for two key areas: frequent sequence mining in transactional databases and enhanced load value prediction. A novel algorithm, SPAM (Sequential Pattern Mining Algorithm), is introduced to efficiently discover frequent sequences, even those of considerable length. SPAM leverages advanced pruning and indexing techniques to optimize its search. Furthermore, the research explores load value prediction (LVP) through identifying frequent patterns within program memory access traces. These discovered patterns serve as the foundation for developing efficient pre-fetching strategies, leading to improved performance.
Efficient Algorithms for Frequent Sequence Mining and Load Value Prediction
相关推荐
Mining_Massive_Datasets_Algorithms
本书重点介绍了用于解决数据挖掘中关键问题的实用算法,甚至可以在最大的数据集上使用这些算法。
数据挖掘
7
2024-10-31
Data Mining Concepts,Models,Methods,and Algorithms
数据挖掘——概念、模型、方法和算法。PDF版本,国外经典教材,清华大学出版社出版。
数据挖掘
16
2024-11-03
DataMiningAlgorithms Top 10Algorithms in Data Mining
数据挖掘中的10大算法抽象的介绍参考:1. 数据挖掘的10大算法2. ICDM 06关于“数据挖掘中数据挖掘的10大算法”的小组讨论3. 数据挖掘的10大算法4. 数据挖掘前10大算法的18个候选算法5. T-61.6020计算机与信息科学专题课程II P:数据挖掘和机器学习中的流行算法6. IEEE数据挖掘国际会议
数据挖掘
13
2024-10-31
Data_Mining_Concepts_Models_Methods_Algorithms
数据挖掘——概念、模型、方法和算法 DATA MINING Concepts,Models,Methods,and Algorithms(美)Mehmed Kantardzic著,闪四清、陈茵程、雁等译,清华大学出版社
数据挖掘
11
2024-11-07
Small OCR Application Supported by Data Mining Algorithms
光学字符识别(OCR)是一种技术,它允许计算机自动识别并转换图像中的文本为可编辑、可搜索的数据。这种技术在日常生活中广泛应用,如扫描文档、车牌识别、票据处理等。在本项目中,我们讨论的是一款小型OCR应用程序,它的核心是利用数据挖掘算法来提高识别准确性。我们要理解OCR的工作原理。OCR技术通常包括图像预处理、特征提取、模式识别和后处理四个步骤。图像预处理阶段涉及调整图像质量,例如去除噪声、二值化(将图像转化为黑白)、倾斜校正等。特征提取是识别关键部分,通过检测字母或数字的形状、大小和方向来创建特征向量。模式识别则根据这些特征来匹配已知的字符模板,而后处理用来修正可能的识别错误。在这个小型OCR
数据挖掘
12
2024-10-31
Oracle 高级查询:分析函数 first_value 和 last_value
本指南介绍了 Oracle 高级查询中分析函数 first_value 和 last_value 的用法。这些函数用于获取数据组中第一行或最后一行中的值。
Oracle
16
2024-05-19
Heuristic Method for Efficient Clustering of Uncertain Objects
针对不确定对象的有效和高效聚类的启发式方法在数据挖掘领域,聚类分析是核心技术之一。它通过分析数据对象的属性,将具有相似属性的对象分成同一类群。然而,在现实世界的数据中,对象的位置往往存在不确定性,可以通过概率密度函数(pdf)来描述。探讨的是不确定对象的聚类问题,这些对象的位置具有不确定性。现有的剪枝算法存在一个新性能瓶颈,导致每次迭代时为每个不确定对象分配候选簇的开销。为此,提出了新的启发式方法来识别边界案例的对象,并将它们重新分配到更好的簇中。文中提到的关键技术是UK-means算法,其在传统的K-means算法基础上扩展,能够处理不确定对象的聚类问题。如果考虑平方欧几里得距离,UK-me
数据挖掘
8
2024-10-31
Efficient Random Permutation in MATLAB with Knuth Shuffle
您可以使用MATLAB的randperm函数生成随机排列。不幸的是,randperm函数效率很低,因为它是通过对随机数列表进行排序来实现的。这需要时间O(n * log(n))。使用Knuth shuffle算法,这个操作只需要时间O(n)。这个包实现了Knuth shuffle。用法:只需使用randpermquick(n)而不是randperm(n)。请注意,在使用randpermquick之前,必须先编译文件randpermquick_helper.c。
Matlab
9
2024-11-04
Matlab Singular Value Decomposition Solutions
很不错的Matlab代码,可以很好的解决奇异值分解问题。
Matlab
15
2024-11-04