Spark ML Pipeline优化之线性回归交叉验证
Spark ML Pipeline(管道)是一个强大的工具,允许开发者将多个机器学习步骤组织成可执行流程,简化模型构建和调优。在这个案例中,我们专注于线性回归模型的训练,特别是通过交叉验证来优化模型参数。交叉验证通过将训练集分成多个部分进行重复训练和测试,以评估模型性能并减少过拟合风险。在Spark MLlib中,CrossValidator类提供了这一功能。例如,我们设置numFolds=5,每次训练时使用4/5数据进行训练,1/5用于测试,重复5次。我们定义了一系列参数组合,如maxIters(最大迭代次数)、regParams(正则化参数)、elasticNetParams(弹性网络参数
spark
10
2024-09-01
Spark ml pipline交叉验证之KMeans聚类.docx
Spark ml pipline交叉验证之KMeans聚类模型。训练输入参数、训练代码、模型评估、评估输入参数和评估代码。
spark
9
2024-07-12
Spark ML Pipeline决策树分类交叉验证
Spark ML 的交叉验证用起来还挺顺手,是搭配决策树分类这种直观的模型,效果和效率都不错。文档里写得清楚,从参数怎么配,到怎么搭 pipeline,基本一步步照着来就能跑通,代码也不复杂。
交叉验证的numFolds设成 5 是个比较稳的选择,数据分得够细,又不至于太耗时。还有像maxDepths和maxBins这种调参,配合ParamGridBuilder就能快速测试多个组合,训练完还能直接评估准确率,省心。
整体 pipeline 结构也蛮清晰:先用VectorAssembler组特征,再用StandardScaler做归一化,套个DecisionTreeClassifier,全丢进P
spark
0
2025-06-15
Apache Spark - 验证大数据与机器学习管道
档描述了在Spark作业中验证大数据的设计思路和示例代码。
spark
22
2024-07-23
PEMF 交叉验证
PEMF 交叉验证是一种利用预测增强模型(PEM)评估代理模型预测性能的方法,特别适用于交叉验证场景。
Matlab
14
2024-05-30
机器学习与数据科学回归方法与交叉验证实践合集
机器学习和数据科学项目的代码资源,真挺值得一看。分类、回归、聚类这些经典玩法全覆盖了,而且不仅有KNN、SVM这些常见模型,还整合了交叉验证方法,比如LOOCV、K 折啥的,跑得通、改得动,用起来也顺手。
回归这块分类得比较细,线性回归、逻辑回归到树模型都有,连降维、正则化都提到了,挺全的。你要是做 BMI 预测、健康数据这类项目,真的蛮适合拿来借鉴的,尤其是7 倍 KNN能跑到 81.54%的准确率,表现还不错。
课程项目里面的分类器实现几乎是个小型工具库了,和stats 415的教学内容配合得蛮好。想搞明白怎么选模型、怎么理解偏差和方差、甚至怎么挑变量,这里面基本都有实践案例。你要是不太确
数据挖掘
0
2025-06-29
Spark MLlib中的朴素贝叶斯分类器与交叉验证技术
在Spark MLlib库中,Pipeline和CrossValidator是构建和优化机器学习模型的关键工具。重点介绍如何利用它们训练朴素贝叶斯分类模型,并通过交叉验证评估模型性能。
spark
8
2024-08-28
Matlab代码支持向量回归(SVR)和启示向量回归(RVR)分析及交叉验证
Matlab代码Pattern_Regression_Matlab支持向量回归(SVR)和启示向量回归(RVR)分析,包括交叉验证以评估预测能力。请在使用代码时引用相关论文:Zaixu Cui, Gaolang Gong,《机器学习回归算法及样本大小对基于功能连接特征的个性化行为预测的影响》,NeuroImage,2018年,178: 622-37;Zaixu Cui等,《利用灰质体积个性化预测阅读理解能力》,Cerebral Cortex,2018年,28(5):1656–72;Zaixu Cui等,《个性化预测阅读理解能力的研究》,2018年,Cerebral Cortex,28(5):1
Matlab
15
2024-08-24
阿里云ML与Spark MLlib最佳实践
阿里云ML与Spark MLlib的最佳实践,展示了如何在现实应用中有效利用这些技术。
spark
14
2024-07-13