这是用MATLAB实现的主成分分析法的源代码,包含了数据,可以直接运行。
MATLAB实现的主成分分析法源代码
相关推荐
主成分分析法-多元统计分析
基本原理:将高维数据投影到低维空间中,保留最大方差的信息。
数学模型:特征值分解协方差矩阵,求出特征向量和特征值。
模型求解:计算特征值、特征向量并降维。
主成分性质:线性无关、正交、代表数据最大方差。
步骤与应用:确定目标维度,计算协方差矩阵,求解特征值和特征向量,降维并分析主成分。
统计分析
15
2024-05-13
基于Matlab的主成分分析代码实现
Matlab代码实现了主成分分析(PCA)方法。
Matlab
12
2024-08-18
主成分分析
该压缩文件包含了有关主成分分析的信息和资源。
Hadoop
23
2024-05-13
matlab主成分分析的开发
matlab主成分分析的开发。主成分分析在数据分析中起着重要作用。
Matlab
16
2024-08-22
主成分分析的R语言实现
主成分分析的R语言实现
本部分涵盖使用R语言进行主成分分析(PCA)的不同方法。
1. princomp() 函数
R语言内置函数princomp()可以直接执行主成分分析。该函数使用特征值分解方法,并提供特征值、特征向量(主成分载荷)和主成分得分等结果。
2. 封装 princomp() 函数
为了方便使用,可以将princomp()函数封装到自定义函数中,以便根据需要添加额外的功能或参数设置。
3. pca() 函数
pca()函数是另一个执行主成分分析的函数,通常包含在不同的R包中,例如FactoMineR。pca()函数可能提供比princomp()函数更丰富的输出和可视化选项。
算法与数据结构
14
2024-05-25
主成分分析:降维利器
想象一个高斯分布,它的平均值位于 (1, 3),在 (0.878, 0.478) 方向上的标准差为 3,而在正交方向上的标准差为 1。黑色向量表示该分布协方差矩阵的特征向量,其长度与对应特征值的平方根成比例,并移动到以原始分布平均值为原点。
主成分分析 (PCA) 是一种强大的降维技术,广泛应用于多元统计分析。它通过识别并保留对数据方差贡献最大的主成分,在降低数据维度的同时最大程度地保留数据信息。
统计分析
14
2024-05-21
基于Matlab的机器学习主成分分析实现代码
基于PCA基本原理编写了主成分分析算法代码,不使用封装函数,且符合吴恩达机器学习课程要求。
算法与数据结构
10
2024-08-12
数据标签主成分分析实验PCA主成分提取
我们目前有一个数据文件‘Country-data.xlsx’,包含10列数据。第1列是国家名称,其余九列X1~X9是数字类型的数据标签。我们需要进行主成分分析,确保累计贡献率达到90%,并输出它们的特征向量和贡献率属性。
数据挖掘
17
2024-10-17
使用Matlab进行主成分分析的程序代码
这是Matlab中用于计算主成分的代码,包括详细的语句注解,方便直接使用。
Matlab
14
2024-07-27