本资源涵盖线性回归、Logistic回归、一般回归、K-means聚类分析、独立分析、线性判别分析、增强学习、混合高斯模型和EM算法的学习笔记,并持续更新。
深入理解机器学习算法
相关推荐
机器学习算法实战
算法实战:探索机器学习核心
本篇带您深入浅出地了解机器学习常见算法,涵盖监督学习、无监督学习和强化学习三大类别,并结合实际案例,助您快速上手算法应用。
### 监督学习
线性回归: 预测连续目标变量,例如房价预测。
逻辑回归: 解决二分类问题,例如判断邮件是否为垃圾邮件。
决策树: 构建树形结构进行分类或回归预测,例如客户流失预警。
### 无监督学习
聚类分析: 将数据分组到不同的簇中,例如客户细分。
主成分分析: 降低数据维度,提取主要特征,例如图像压缩。
### 强化学习
Q-learning: 通过试错学习最优策略,例如游戏 AI。
SARSA: 基于当前策略
算法与数据结构
18
2024-05-25
深入理解MySQL学习PPT
深入理解MySQL学习PPT:查询会话变量使用的方法包括't show session variables like 'character_set_client';'和't show variables like 'character_set_client';'。查询全局变量的方法是't show global variables like 'character_set_client';'。此外,还可以通过2.5.2版本来查看系统变量的值。
MySQL
7
2024-10-19
机器学习算法简介及分类
机器学习的发展中,有一条被称为“没有免费的午餐”定理。简单来说,它指出没有一种算法能够解决所有问题,尤其是在监督学习领域。
算法与数据结构
16
2024-07-17
经典机器学习分类算法详解
将详细介绍机器学习分类算法的相关内容:1. Python及其机器学习库的安装方法;2. 数据库中数据的获取与处理技巧;3. 对数据库中数据应用多种机器学习算法进行分类预测,并比较它们的准确性;4. 最终选定最优算法进行最终预测。
算法与数据结构
9
2024-07-25
中文学习手册深入理解PostgreSQL
PostgreSQL学习手册知识点详解
一、表的定义与操作
表是关系型数据库中最基本的数据存储单元。1. 创建表- 基本语法:
CREATE TABLE products (
product_no integer,
name text,
price numeric
);
创建包含默认值的表:
CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
);
使用SERIAL类型自动生成唯一标识符:
CREATE TABLE products (
pro
PostgreSQL
8
2024-10-20
深入理解SQLite
详尽解析SQLite的实现与应用技巧,是学习SQLite的绝佳指南。
SQLite
7
2024-10-13
分类算法对比-机器学习 PPT
比较 Kotsiantis 等人 (2007) 和 Hastie 等人 (2009) 的分类算法
阐述算法原理、优缺点以及适用场景
算法与数据结构
14
2024-05-25
深入理解 CouchDB
本书是 CouchDB 领域的全面指南,帮助读者深入了解和掌握 CouchDB 数据库。
MongoDB
15
2024-06-30
深入理解Hadoop
深入理解Hadoop
本书深入探讨了Hadoop分布式系统架构、核心组件和应用场景,为读者揭示了海量数据处理的奥秘。从底层原理到上层应用,本书提供了全面而深入的讲解,帮助读者掌握Hadoop的核心技术,并将其应用于实际项目中。
Hadoop
12
2024-05-23