动态聚类方法是一种广泛采用的技术,其核心包括:1)选择适当的距离度量来衡量样本之间的相似性;2)确定能够评估聚类结果质量的准则函数;3)从初始分类出发,通过迭代算法寻找最优的聚类结果,以使准则函数达到极值。
动态聚类分析的新方法探索
相关推荐
探索数据宝藏:解读聚类分析方法
探索数据宝藏:解读聚类分析方法
聚类分析,如同一位数据侦探,致力于将看似杂乱无章的数据点,按照其内在的相似性,归类成不同的群体。每一种聚类方法,都如同数据侦探的独门秘籍,帮助我们揭示数据背后的奥秘。
常见聚类方法:
K-Means 聚类: 如同训练有素的猎犬,根据预设的目标群体数量 (K),将数据点划分到距离最近的中心点周围,形成不同的族群。
层次聚类: 宛如绘制数据家谱,将相似度高的数据点逐步合并,最终形成一棵层次化的树状结构,清晰地展现数据间的亲疏关系。
DBSCAN 聚类: 犹如一位经验丰富的探险家,能够自动识别数据中的密集区域,将聚集在一起的数据点归为一类,同时剔除噪声
数据挖掘
15
2024-05-27
基于贝叶斯分类的聚类算法软聚类的新方法
介绍了一种新的软聚类算法,名为基于贝叶斯分类的聚类。该算法不需要随机初始化,而是利用本地度量来选择最佳的聚类数。通过最小化可以从软聚类分配中推导出的对数贝叶斯风险来执行聚类,这被视为聚类过程的优化目标函数。算法类似于期望最大化,最小化所提出的聚类功能。此外,该算法已实现CPU和GPU版本。
Matlab
11
2024-09-27
探索数据奥秘:聚类分析算法
聚类分析算法是数据挖掘领域中的一大利器,它能够将数据集中相似的数据点归类到一起,形成不同的簇。
想象一下,你拥有大量的客户数据,通过聚类分析,你可以将客户分成不同的群体,例如高消费群体、潜在客户群体等等。这种分类方法可以帮助企业更好地理解客户需求,制定更有针对性的营销策略。
聚类分析算法种类繁多,例如 K-Means 算法、DBSCAN 算法等等,每种算法都有其独特的优势和适用场景。选择合适的算法取决于数据的特点和分析目标。
数据挖掘
16
2024-05-15
聚类分析方法讲义资料
聚类方法的讲义 PPT,内容还挺实在的,适合做数据或市场细分的朋友参考一下。讲得比较清楚,从聚类的基本任务讲到系统聚类法,像k-means、欧式距离、Q-距离这些常见算法和概念都带到了,搭配案例用起来会更直观。
里面提到的样本分类和变量分类,是做初步探索时常见的做法,尤其是在你数据还比较“原始”的时候,用聚类先分个类,再去做判别、降维都比较方便。就像是先把人群按兴趣标签分个组,再研究他们的行为特征。
距离和相似性这块讲得也不啰嗦,比如用欧式距离判断相近,或者用余弦相似度看方向一致,其实你在用sklearn的时候经常得选这些参数,有这个讲义打底,心里会更有谱。
另外提到的系统聚类法,其实挺适合做
统计分析
0
2025-06-15
MATLAB学习资源探索聚合矩阵的全新方法
聚合矩阵是通过连接一个或多个矩阵形成新的矩阵的过程。在MATLAB中,符号[ ]不仅表示矩阵构造,还是聚合操作的重要运算符。例如,通过在垂直方向上聚合矩阵A和B,可以创建新的矩阵C。示例中,A = ones(2, 5) * 6; 创建了一个2×5元素为6的矩阵,而B = rand(3, 5); 则生成了一个3×5的随机数矩阵。最后,通过表达式C = [A; B] 将这两个矩阵在垂直方向上聚合。
Matlab
12
2024-07-18
MATLAB中的高效Wasserstein重心离散分布聚类的新方法
在MATLAB中,WBC_Matlab为离散分布聚类提供了一种高效的Wasserstein重心计算方法,特别适用于具有稀疏支持的情况。
Matlab
8
2024-09-27
基于Matlab的伪距单点定位新方法探索
介绍了一种基于Matlab的伪距单点定位新方法,包括rinex导航文件和观测文件的读取技术。该方法独立于传统定位程序,同时考虑了地球自转、卫星钟误差、接收机钟误差、相对效应、电离层和对流层等多种校正因素。此外,还对定位结果进行了简单的卡尔曼滤波处理。
Matlab
11
2024-08-12
地震目录关联规则分析新方法
提出一种Inter-Apriori方法,用于挖掘地震目录中的相关区域。该方法通过改进关联规则算法的兴趣度度量,能够高效获取准确的地震信息。实验结果表明,Inter-Apriori方法可以快速找到更有价值的地震相关区域。该方案为地震研究提供了新的视角,加强了地震目录数据分析的重要性,并推进了地震预报工作。
数据挖掘
12
2024-04-30
聚类分析算法
该PPT简要介绍C均值聚类方法的原理和步骤,适合对C均值有初步了解的人员。若要深入学习,推荐参考谢中华老师的《MATLAB统计分析与应用》。
统计分析
11
2024-04-29