这是一个集结了各种与图像去噪相关的论文和数据集的Matlab代码库。特别关注现实世界中的图像去噪技术。我正在持续收集相关论文,如果您有兴趣将自己的论文添加到这个仓库,请随时通过lihao9605 [at] gmail.com与我联系。我将尽快更新您的内容。如果您喜欢这个仓库,请考虑点赞或Fork以支持我的工作。谢谢!注意,此集合基于DL方法,针对2021年及更多年份的论文进行了快速导航。包括模型发布的代码,如MPR网络,多阶段渐进式图像复原,Neighbor2Neighbor,单个噪声图像的自我监督降噪等。
Matlab图像去噪代码集合优秀的图像降噪方法与数据集整理
相关推荐
MATLAB图像去噪代码综述
这是一个月学习总结的图像预处理结果,包含10种常见的图像去噪方法:巴特沃斯高通滤波、高斯滤波、各向异性扩散、均值滤波、双边滤波、同态滤波、维纳滤波、小波去噪、中值滤波、自适应中值滤波等。这些方法可以有效地改善图像质量,适用于不同的图像处理需求。
Matlab
10
2024-08-18
DnCNN图像去噪MATLAB实现
jpeg 压缩图像的去噪,用DnCNN还挺靠谱的。残差学习那套思路用起来蛮顺的,不直接预测干净图像,而是学残差,效果还不错。你要是用过 BM3D、WNNM 那类方法,应该知道它们虽然挺灵活,但速度慢得。这个用卷积神经网络的方式,训练起来也蛮快,尤其是加了批量归一化,收敛稳定多了。代码是用MATLAB写的,思路清晰,逻辑也不绕,看一遍就能跑。里面的场景是高斯白噪声(AWGN),适合做图像增强、超分辨率预这些事。如果你是搞视觉方向的学生或工程师,想找个简单好上手的深度学习图像去噪项目当课程练习或者小项目,这套代码可以直接用,省不少事。你要是更喜欢 PyTorch 实现的?也有类似版本可以参考:Dn
Matlab
0
2025-06-16
MATLAB灰度模型代码UDNet实现图像去噪
本软件包实现了灰度和彩色图像的去噪,使用了斯塔菲斯氏菌通用降噪网络(UDNet),这是一种新型CNN架构。该代码首次在2018年6月的IEEE计算机视觉与模式识别会议(CVPR)中展示。如果您在研究中使用此代码,请引用相应论文。详细信息和许可证请参阅LICENSE.txt文件。UDNET_DENOISE_DEMO函数展示了灰度和彩色图像去噪的训练模型,所有相关文件均在network-inference文件夹中。另外,BSDSValidation脚本可用于验证BSDS68数据集上每个模型的性能。matlab/custom_layers文件夹包含了CVPR中描述的所有CNN层,而matlab/+m
Matlab
10
2024-07-17
使用偏微分方程进行图像去噪的Matlab代码集合 - 平滑扩散方法
希望这个Matlab代码集合,通过应用偏微分方程(PDE)来进行图像去噪,能够有效地帮助您。
Matlab
14
2024-07-29
基于MATLAB GUI的图像去噪平台设计
首先简要介绍了高斯噪声、椒盐噪声等常见噪声模型及其特点,接着对MATLAB GUI平台进行了相关介绍。最后详细阐述了线性滤波、中值滤波、维纳滤波和小波去噪四种滤波方法的原理,并展示了如何通过MATLAB GUI将它们整合到一个图像处理平台上。
Matlab
8
2024-09-27
三维图像块匹配图像去噪技术
三维图像的块匹配技术,挺适合用来搞图像去噪,是在视频或者 3D 图像数据的时候,效果还蛮不错的。它的思路其实也挺直白——把图像切成小块,再去找跟它长得像的块,拿来一起噪声。嗯,像视频降噪这种场景,用这个方法保留动作流畅性还挺有用的。
三维图像块匹配的核心,就是在图像的空间和时间上都做匹配,不只是二维图像那样找相似块,而是连前后帧都一起看。比如你在一段视频时,前后帧中重复或类似的图像块,能帮你更稳准地判断什么是噪声,什么是真实内容。
整个去噪流程分几步:先是块选择,把图像切成小块;块匹配,用像MSE或SSIM去算相似度;做噪声,用均值滤波、NLMeans这些办法来搞定噪声;重建图像。一套流程下来
Access
0
2025-06-17
使用OMP和K-SVD算法实现基于YaleB数据集的图像去噪
大数据算法在数据分析中扮演关键角色,它能显著提升分析效率与准确性,为决策提供有力支持。具体而言,大数据算法能够进行分类、聚类、预测和关联规则分析,揭示数据间的模式与关联,深度挖掘数据潜力。
算法与数据结构
14
2024-07-16
图像去噪中的中值滤波性能分析
在图像处理中,中值滤波展现出了有效的去噪能力,特别是对于原图像中的高斯噪声和椒盐噪声。采用5×5的十字形中值滤波可以有效减少噪声干扰。
Matlab
19
2024-07-29
SGF算法在图像去噪中的应用
SGF算法是一种基于分段图的图像过滤方法,快速保持图像结构的平滑性。该方法由张飞虎等人在IEEE国际计算机视觉会议论文集中提出。要使用这一方法,需要安装opencv和libpng,并编译源代码。SGF算法已在Linux和Windows平台上进行了验证,可直接在win32环境下使用。
Matlab
14
2024-07-30