旅行商问题(TSP)是一个著名的数学问题,描述了一个旅行商需要访问一系列城市,每个城市只能访问一次,并且回到起始城市的最短路径问题。问题最早可以追溯到1759年欧拉研究的骑士周游问题。TSP由美国RAND公司于1948年引入,并因线性规划方法的出现而广为人知。随着城市数量增加,可能的路径组合指数级增长,传统的暴力搜索方法难以找到最优解。但遗传算法、模拟退火算法、蚁群算法等启发式方法已被提出用于大规模实例的解决。TSP在运筹学、理论计算机科学等领域有广泛应用,如车辆路径问题、调度问题、网络路由问题等。
基于NSGA-II算法的多目标多旅行商问题模型及求解
相关推荐
NSGA-II多目标进化算法
多目标优化里头,NSGA-II 算法还挺经典的,属于进化算法中的老大哥级别。它是在老版 NSGA 的基础上做了不少优化,比如非支配排序快了不少,速度快,代码也不臃肿。精英策略的引入也让好个体不容易被淘汰,结果更稳,收敛也更快。
精英策略的引入挺关键,防止了“好苗子”在迭代中被随机干掉的尴尬。举个例子,如果你在做路径规划、多目标调度这类事儿,这点能帮你节省不少调参时间。
拥挤度比较这块也蛮有意思。以前的 NSGA 要手动设置共享半径,麻烦还容易出锅。NSGA-II 直接上密度排序,你不用再关心那些参数细节,个体分布也更均匀,结果看起来就舒服多了。
资源是打包好的NSGA-II.zip,里面代码结
算法与数据结构
0
2025-06-17
NSGA-II多目标优化算法中文注释详解
NSGA-II(非支配排序遗传算法第二代)是一种多目标优化算法,其在解决具有多个相互冲突的目标函数的问题方面表现突出。多目标优化问题通常比单目标问题更为复杂,因为其目标是找到一组最优解,即帕累托前沿,而非单一的全局最优解。 NSGA-II的核心思想是模拟生物进化过程,以探索多目标问题的解空间。其关键步骤包括:1. 初始化种群:随机生成一组初始解作为算法的起始种群。 2. 适应度评估:计算每个个体的适应度值。在NSGA-II中,适应度评估基于非支配等级和拥挤距离两个指标。非支配等级用于评价个体在所有解中的相对优劣,而拥挤距离则处理帕累托前沿上的拥挤情况,确保多样性。 3. 选择操作:NSGA-I
算法与数据结构
16
2024-10-03
基于Matlab灰狼算法求解多旅行商问题(含Matlab源码)
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白。代码压缩包包含主函数:main.m,调用其他m文件,无需运行结果效果图。代码适用于Matlab 2019b版本,若有错误提示,可根据提示修改,如有疑问,请私信博主。操作步骤包括将所有文件放置于Matlab当前文件夹中,双击打开main.m文件,点击运行,等待程序完成运行并得到结果。若需其他服务或详细代码,请私信博主或扫描视频QQ名片。博客或资源提供完整代码,期刊或参考文献复现,Matlab程序定制,科研合作。
Matlab
22
2024-07-19
基于MATLAB GUI的遗传算法多旅行商问题求解
本视频提供了一种基于MATLAB图形用户界面(GUI)的遗传算法(GA)来解决多旅行商问题(MTSP)。该算法适用于多个起始点和不同终点的场景。视频中包含了详细的代码和运行说明,便于理解和使用。
Matlab
13
2024-05-30
基于遗传算法的旅行商问题求解
该项目利用遗传算法解决旅行商问题,目标是在给定的30个城市(经纬度已提供)中找到最短路径。用户可以自定义调整重组概率、变异概率以及迭代次数,以优化算法性能。
算法与数据结构
18
2024-05-12
旅行商问题MATLAB求解案例
这份资源提供了利用 MATLAB 解决旅行商问题的具体案例。案例中会涵盖问题的建模、算法的选择以及 MATLAB 代码实现等方面,帮助理解和运用 MATLAB 解决实际问题。
数据挖掘
9
2024-05-15
EvoLib 开源多目标优化算法NSGA-II及其改进版
EvoLib是NSGA-II、NSGA-III和改进的U-NSGA-III的开源实现,用于解决进化多目标优化问题。NSGA-II是一种著名的进化多目标优化算法,NSGA-III则扩展到处理多达20个目标。U-NSGA-III在单目标优化中性能提升显著,保持了在多目标优化中的高效率。该库依赖于开源数学表达式解析器Tx2Ex和Apache Commons Lang3,提供了详细的格式化输出和Matlab绘图脚本,设计上易于扩展且附带详细注释。欲了解更多或直接修改EvoLib,请使用Git克隆到本地文件系统。
Matlab
7
2024-08-14
MATLAB解决多旅行商问题的遗传算法
介绍了一种使用遗传算法解决多旅行商问题(MTSP)的MATLAB程序。该程序分别应对了五种情况:1. 不同起点出发回到起点(固定旅行商数量);2. 不同起点出发回到起点(根据计算可变的旅行商数量);3. 同一起点出发回到起点;4. 同一起点出发不回到起点;5. 同一起点出发回到不同终点(与起点不同)。这些算法能有效地解决复杂的旅行商问题,展示了MATLAB在优化领域的强大应用。
Matlab
10
2024-07-20
多旅行商问题MATLAB实现合集
5 种多旅行商问题的 MATLAB 实现方法合集,蛮适合想搞清楚不同任务分配策略的朋友。每种场景都配了完整代码,像“从同一起点出发不回起点”这种需求在多无人机调度、物流路线规划里还挺常见的。
多旅行商问题的几种典型变形都囊括了:固定起点、可变终点、回不回起点的,全都有。你只要改改输入数据,基本就能直接跑,省了不少时间。
比如第 3 种——从同一起点出发回到不同终点,就适合模拟多辆车从仓库出发各自配送的场景。脚本结构清晰、参数注释也比较友好,不会看不懂。
哦对了,代码是用MATLAB写的,兼容性还不错,2021a 版本亲测没问题。你可以顺带看看一些相关优化算法的例子,像是蚁群算法、模拟退火这类,
Matlab
0
2025-06-14