常微分方程模型分析涉及系统的输入变量为u(t),输出变量为y(t)。系统微分方程如下:D6y + 8.8D5y + 76.1D4y + 237.3D3y + 904.4D2y + 840Dy + 186.5y = 65D4u + 327D3u + 3699.6D2u + 1187.6Du - 0.2*u。实现过程中使用了微分模块、加法器和比例器构建系统,详细求解见work21.mdl。
MATLAB常微分方程模型综述与仿真指南
相关推荐
MATLAB常微分方程数值解法
matlab 的微分方程解法资源挺丰富的,尤其是对常微分方程的数值方法比较全,适合平时搞建模、做控制系统仿真的同学参考。文章不只是讲原理,还配了 MATLAB 实现,代码也挺清晰。比如欧拉法、Adams 方法这些常见套路,基本都能找到,而且用的语言你一看就懂,不绕弯子。如果你是新手,建议先从欧拉法的那篇开始,思路简单,代码也好上手。
Matlab
0
2025-06-17
MATLAB 常微分方程 Runge-Kutta 求解
利用四阶 Runge-Kutta 方法数值求解一阶常微分方程 dy/dx=func(x,y) 的 MATLAB 代码。使用方法:
设置 func.m 中的 func(x, y)
设置 RungeKutta.m 中的初始条件和参数
调整 XINT、YINT、XFIN、NUM
运行 RungeKutta.m
在工作区可查看求解结果 x 和 y,可通过 plot(x, y) 可视化结果。
Matlab
18
2024-05-01
MATLAB中不同数值方法解常微分方程
MATLAB可以利用四阶龙格库塔法、欧拉法和改进的欧拉法等不同数值方法来解常微分方程。
Matlab
9
2024-08-27
解析MATLAB中的常微分方程求解方法
科学技术和工程中许多问题可以通过建立微分方程数学模型来描述,因此掌握MATLAB中的微分方程求解方法具有实际意义。
Matlab
18
2024-07-20
常微分方程数值解法比较及MATLAB实现
主要探讨常微分方程的数值解法,包括欧拉法、改进欧拉法和四阶龙格库塔法。针对每种方法,详细分析其原理及在MATLAB中的实现过程,提供详尽的程序代码示例。
Matlab
7
2024-09-27
常微分方程的数值解法及其Matlab实现
常微分方程的数值解法是数学、物理、工程领域中经常用到的工具。本文了几种常见的数值解法,包括**Euler 法**、**Runge-Kutta 法**和**Adams 方法**,以及它们在 Matlab 中的实现。对于初学者,**Euler 法**简单易懂,但精度较低,适合快速入门。**Runge-Kutta 法**则了更高的精度,是实际中比较常用的方法,而**Adams 方法**则在一些复杂问题时显得更为高效。通过本文,你可以快速上手这些方法并在 Matlab 中实现它们。其实,无论是物理模拟,还是工程计算,常微分方程的数值解法都能帮你省去大量手动计算的麻烦,大大提高效率。推荐给正在学习数值计
Matlab
0
2025-06-14
Matlab算法模型微分方程分析
下载内容:微分方程相关的Matlab算法模型,包括示例和代码。
Matlab
7
2024-11-04
MATLAB程序实现常微分方程参数分岔图
在本程序中,我们将研究常微分方程的参数分岔图。通过ODE代码的实现,用户可以直观地观察不同参数下的分岔图行为。
算法与数据结构
14
2024-10-31
Matlab软件求解常微分方程的数值方法-Matlab算法
用Matlab软件解常微分方程的数值方法包括ode45、ode23和ode113等。这些方法根据待解方程写成的m文件名进行求解。用户可以设定自变量初值和终值,以及设定误差限。例如,使用options=odeset('reltol',rt,'abstol',at)来设置相对误差和绝对误差。
Matlab
12
2024-10-01