本程序结合协同模糊聚类算法和G-K算法,利用Matlab实现了T-S模型的构建,并对输入的训练数据进行了测试。输入数据包括训练数据的实际输出和特征矩阵,以及测试数据的实际输出和特征矩阵。输出结果包括模型对训练数据和测试数据的均方根误差评估,最后生成模型对测试数据的拟合图。程序还考虑了交叉验证的影响,对测试数据进行了分组处理。
Matlab模糊聚类与G-K算法结合的T-S模型构建及性能评估
相关推荐
Matlab非线性T-S模糊控制仿真
Matlab中进行非线性T-S模糊控制仿真,此文件展示了一个仿真塔温控动态控制的实例。
Matlab
10
2024-09-25
基于K-means聚类算法的民航客户细分模型构建
基于K-means聚类算法的民航客户细分模型构建
问题背景
客户关系管理中,客户价值评估是关键环节。通过分析航空公司数据仓库中的客户信息,构建精准的客户细分模型,可以有效提升客户价值。
方法与模型
本研究采用数据挖掘技术中的K-means聚类算法,对民航客户进行细分。通过实验分析,将客户划分为3个类别,并针对每类客户制定相应的营销策略。
结果与结论
实验结果表明,K-means聚类算法能够有效识别客户行为特征差异,实现精准的客户细分。基于细分结果制定的营销策略,可将客户价值提升约30%。
模型优势
精准识别客户行为差异
有效提升客户价值
指导制定差异化营销策略
应用领域
民航客户关系管理
数据挖掘
19
2024-04-30
模糊算法与神经网络结合的预测模型.zip
结合模糊算法与神经网络的技术,设计了一种新型的预测模型。
Matlab
9
2024-09-28
k-means聚类算法及matlab代码的应用
在机器学习与数据挖掘实验中,我们探索了k-means聚类算法的应用,使用Matlab实现了相关代码。实验涵盖了多源数据集成、清洗和统计,以及数据的数值量化处理。我们通过C/C++/Java程序实现了两个数据源的合并,并解决了数据的一致性问题。实验结果包括了学生家乡在北京的课程平均成绩计算,以及对广州和上海女生体能测试成绩的比较。此外,我们还分析了学习成绩与体能测试成绩之间的相关性。
Matlab
13
2024-08-03
MATLAB K值聚类算法
K 值聚类算法的原理挺简单,核心就是找中心、分组、再更新中心,循环几次就能把数据聚成类。用 MATLAB 来搞这个还挺顺手的,内置函数kmeans方便,几行代码就能跑起来,响应也快,结果还靠谱。你要是懒得自己从头写,那直接用kmeans(X, K)就完事。
MATLAB 的kmeans支持不少参数,比如'EmptyAction'可以控制遇到空簇怎么。加上'singleton'后,会用一个数据点临时补上,挺实用的,尤其是数据有点稀的时候。
聚类效果不稳定?率是初始化惹的祸。随机选质心嘛,有时候就是不靠谱。你可以试试K-means++初始化,质心选得分散些,跑出来的结果也更稳。这在图像分割里有用,
算法与数据结构
0
2025-07-01
k均值聚类算法原理及步骤
输入:- 簇的个数k- 包含n个样本的数据集输出:- 各样本所属的k个簇算法步骤:1. 随机选择k个样本作为初始簇中心2. 循环:1. 将非中心点数据根据与各簇中心的距离划分到最近的簇中2. 在非中心点中随机选择一个样本3. 计算使用该样本代替原簇中心形成新簇的代价4. 如果新簇代价更低,则更新簇中心为该样本重复步骤2直到满足终止条件(如簇中心稳定)
数据挖掘
14
2024-05-30
K均值聚类算法
这份文档包含了用于图像分割的K均值聚类算法的Matlab程序代码。
算法与数据结构
9
2024-07-17
K均值聚类算法的MATLAB实现与实验效果
K均值聚类MATLAB源程序,结合实际数据进行了实验,效果较好。通过此程序,用户可以快速实现数据的分组聚类,并可视化聚类结果。该程序的步骤如下:
导入数据:将需要聚类的数据导入MATLAB工作空间。
设置参数:定义聚类数量K,初始化聚类中心。
执行聚类:使用MATLAB内置函数进行K均值聚类,迭代更新中心点。
结果展示:输出每一类的聚类中心,生成聚类效果图。
实验表明,该程序能够有效地分组并呈现数据的聚类特征,是数据分析和机器学习初学者的理想选择。
Matlab
8
2024-11-05
K均值聚类算法源码(MATLAB)
提供MATLAB实现的K均值聚类算法源码。
Matlab
18
2024-05-19