执行M文件,这是Kohnen竞争学习神经网络的学习算法。
Kohnen竞争学习神经网络MATLAB开发
相关推荐
MATLAB神经网络学习指南
为MATLAB神经网络学习者和研究人员提供的宝贵资料
Matlab
10
2024-04-30
DNNE学习算法MATLAB开发的深度神经网络集成学习算法
这个MATLAB库专门为DNNE算法设计,提供一个完整的集成学习解决方案。
Matlab
15
2024-08-02
神经网络 MATLAB 程序
神经网络识别,可识别三种类别,使用四种特征。可更改程序以识别更多类别。
算法与数据结构
23
2024-04-29
BP神经网络学习算法的MATLAB实现
BP神经网络重要函数
在MATLAB中构建和训练BP神经网络,可以使用以下重要函数:
| 函数名 | 功能 ||---|---|| newff() | 生成一个前馈BP网络 || tansig() | 双曲正切S型(Tan-Sigmoid)传输函数 || logsig() | 对数S型(Log-Sigmoid)传输函数 || traingd() | 梯度下降BP训练函数 |
算法与数据结构
15
2024-05-21
快速神经网络训练工具的MATLAB开发
这是一个简便迅速的工具,用于在MATLAB中训练各种层数的前馈神经网络。
Matlab
8
2024-10-01
MATLAB神经网络教程
本教程介绍了使用MATLAB进行神经网络建模的具体方法,涵盖BP神经网络在软测量中的应用,并提供了相关实例。
Matlab
15
2024-05-27
MATLAB的神经网络实现
MATLAB提供了强大的工具和函数,用于实现反向传播神经网络(BP神经网络)。这些工具和函数使得在MATLAB环境中轻松地搭建和训练BP神经网络成为可能。使用MATLAB,可以有效地进行神经网络的参数调整和性能优化,以适应不同的数据集和应用场景。
Matlab
11
2024-07-23
MATLAB神经网络实例分析
详细记录了MATLAB程序如何应用于解析BP神经网络以及其他类型如RBF网络的具体案例。
Matlab
15
2024-08-10
BP神经网络MATLAB实现
经典的 BP 神经网络算法的 Matlab 实现,思路清晰、注释也还算详细,适合刚上手或者回炉的同学看看。代码直接放在.txt文件里,用起来挺方便的,不用额外解压各种奇怪格式。
用的是标准的反向传播算法,流程基本上是初始化→前向传播→误差计算→反向传播→更新权重。这些步骤代码里都写得比较直白,适合你快速理解整个过程。
比如你要做个手写数字识别的 Demo,或者搞个分类任务,用这个 BP 代码就挺合适的。跑完一遍,对神经网络训练机制大致心里就有谱了。
另外我看了下,还有一些相关的扩展资源,比如MATLAB 代码示例、优化过的版本,你可以按需下载。建议你对比几份代码看看,思路会更清晰。
哦对,如果
Matlab
0
2025-06-13