欢迎访问Last Update: 2020-08-15 NLP, Knowledge Graph Added原始网页:机器学习基本理论基本术语与方法特征选择概述多目标优化问题分类算法聚类算法知识图谱与社交网络知识图谱,即知识域可视化或知识领域映射地图,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及其相互联系。知识图谱是通过数学、图形学、信息可视化技术、信息科学等学科理论与方法结合,并利用可视化的图谱形象地展示学科核心结构、发展历史、前沿领域及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实、有价值的参考。
Python机器学习的应用及其在深度学习领域的发展趋势
相关推荐
机器学习在法律领域的革新应用
探讨了机器学习技术在法律实践中的新应用。广义上讲,“机器学习”是指计算机算法能够随着时间的推移在某些任务上“学习”或提高性能。通常,机器学习算法检测数据中的模式,然后将这些模式应用于新数据以自动执行特定任务。除法律以外,机器学习技术已成功用于自动化原先被认为需要人类智能的任务,例如语言翻译、欺诈检测、驾驶汽车、面部识别和数据挖掘。首先以非技术受众可以理解的方式解释了机器学习方法的基本原理。第二部分探讨了一个更广泛的问题:虽然法律实践被认为需要高级认知能力,但这种认知能力仍然超出了当前机器学习技术的能力。本部分确定了一项核心原则:通常可以通过使用非智能计算技术来自动化通常被认为需要人类智能的某些
数据挖掘
10
2024-08-22
Python-R编程深度学习和机器学习库比较
Python和R编程语言在深度学习和机器学习领域中,使用TensorFlow、Keras、Theano、Pytorch、scikit-learn和Matplotlib等库进行编程。探讨了Python和R在这些库中的应用,包括机器学习和深度学习模型的实践和比较。
数据挖掘
13
2024-07-19
gbrank机器学习的应用
gbrank机器学习在各领域的广泛应用展示了其在科技创新中的重要性。
Access
13
2024-07-19
机器学习在实际应用中的案例分析
机器学习在实际应用中的案例分析第四章排序:智能收件箱的代码及原文代码修正
算法与数据结构
13
2024-07-17
MOPLA模型MATLAB代码的应用及发展趋势
该存储库包含使用MOPLA的MATLAB代码,用于处理特定的地质问题。MOPLA是模拟地球延性岩石圈非均质变形的多尺度数值模型,已经成功应用于评估岩石圈内部和周围的压力分布,研究结晶织物对流动分配的影响,并模拟了韧性剪切带中的3D侧翼结构。此外,存储库还增加了新代码开发,特别是在不同地质问题中的应用。代码格式将很快重组以提升其可读性和实用性。
Matlab
11
2024-08-13
机器学习常用开源数据集及数据挖掘、机器学习、深度学习的区别
机器学习常用开源数据集
在进行机器学习项目时,使用真实数据至关重要。许多开源数据集涵盖了多个领域,为机器学习研究和应用提供了丰富的资源。
寻找开源数据集的途径:
数据仓库平台: 许多平台专门收集和整理开源数据集,例如 Google Dataset Search、Kaggle Datasets、UCI Machine Learning Repository 等。
相关领域网站: 许多研究机构或组织会发布自己领域内的开源数据集,例如医疗、金融、图像识别等。
数据挖掘、机器学习、深度学习的区别
数据挖掘 侧重于从数据中发现模式和规律,并利用算法模型进行分析。其核心目标是揭示数据变量之间的关系,
数据挖掘
15
2024-07-01
电子商务系统的发展趋势
随着因特网的普及和信息高速公路的延伸,人类社会已经进入信息社会时代。在社会化大生产和日趋专业化的背景下,电子商务系统成为了主流。它包括商品管理、购物车管理、系统管理和会员管理等要素,是网上交易的核心。电子商务系统通过电子交易方式实现商业交易,不受地域限制,具有高效便捷的特点。今天,电子商务系统不仅仅是未来发展的方向,更是社会信息化进程中的重要组成部分。
Oracle
13
2024-09-27
机器学习中的协同过滤算法及其应用实践
协同过滤算法的概述
协同过滤算法是一种机器学习技术,广泛应用于推荐系统,以提升推荐的准确性和效率。其核心思想基于用户协同过滤和物品协同过滤。
协同过滤算法的类型
基于用户的协同过滤算法 (UserCF):利用用户之间的相似性进行推荐。若用户A与用户B的偏好相似,则可以将用户B喜欢的物品推荐给用户A。
基于物品的协同过滤算法 (ItemCF):根据物品间的相似性进行推荐。例如,若物品A与物品B的内在关联强,可将物品B推荐给喜欢物品A的用户。
协同过滤算法的实现步骤
收集用户偏好:通过用户行为(评分、点击、购买等)获取偏好数据。
找到相似用户或物品:计算用户或物品间的相似性。
生成推
算法与数据结构
8
2024-10-25
数据挖掘技术的商业应用与发展趋势
数据挖掘技术是一种综合运用技术,基于数据库、统计分析及人工智能等领域,已在零售、保险、电信、电力等行业展示了巨大的商业价值,并逐步向其他领域渗透。它是一种新型的商业分析处理技术,通过从大型数据仓库中发现和提取隐藏信息,帮助决策者发现数据间的潜在关联和被忽视的因素。数据挖掘不仅仅是简单的数据库查询,而是要求对数据进行微观、中观和宏观的统计分析、综合和推理,以指导实际问题的解决,甚至预测未来活动。这些信息和因素对趋势预测和决策行为至关重要。随着信息化进程的推进,企业信息化工作迅速发展,各行业对数据挖掘技术的需求不断增加。
数据挖掘
10
2024-07-20