Matlab声音特征分析从解压缩的声音文件中计算声音特征。项目详细描述在“projectDescription.pdf”中。该项目的核心在于计算能够描述声音本身的唯一特征,从而揭示不同声音之间的共同点和可能的共同来源。
Matlab声音特征分析时域和频域计算
相关推荐
MATLAB程序特征提取在时域与频域的应用
目前可提取的特征包括:1. 最大值 2. 最小值 3. 平均值 4. 峰峰值 5. 整流平均值 6. 方差 7. 标准差 8. 峭度 9. 偏度 10. 均方根 11. 波形因子 12. 峰值因子 13. 脉冲因子 14. 裕度因子 15. 重心频率 16. 均方频率 17. 均方根频率 18. 频率方差 19. 频率标准差 20. 谱峭度的均值 21. 谱峭度的标准差 22. 谱峭度的偏度 23. 谱峭度的峭度。
统计分析
8
2024-10-15
MATLAB心电图分析频域转时域的代码解析
详细描述了用于鼠心电图分析的MATLAB脚本。这些代码能够从频域数据转换为时域数据,实现了心电图的动态监测和异位搏动检测。使用MATLAB R2019b编写和测试,仅需安装Signal Processing Toolbox即可运行。脚本支持多项功能,包括R峰检测和各种心电参数提取,如平均心率、平均RR间隔和心率变异性。
Matlab
12
2024-07-26
随机信号的时域与频域分析
探讨了随机信号的时域与频域特性,包括相关性分析和高斯白噪声的特性。
Matlab
14
2024-07-27
Matlab频域变时域代码
使用Matlab代码将音频信号从频域转换为时域。
Matlab
13
2024-05-01
matlab程序时域系统转频域分析的实验
这个实验涉及将一个特定的时域系统转换到频域,进行幅频特性分析,并模拟外部输入的响应。
Matlab
11
2024-08-17
数据仓库核心特征分析
数据仓库区别于传统数据库,具备以下显著特征:
1. 面向主题:数据仓库聚焦于特定的主题领域,例如客户、产品、交易或财务等,而非具体的业务流程。
2. 数据集成:数据仓库整合来自多个异构数据源的信息,经过提取、清洗、转换和加载(ETL)过程,消除数据冗余和不一致性,形成高质量的数据集合。
3. 非易失性:数据仓库的数据通常以批量方式加载,并以历史快照的形式保存,不会像操作型系统那样频繁更新。
4. 时效性:数据仓库涵盖较长的时间跨度,通常为5到10年,用于支持长期趋势分析和决策。
5. 时间维度:时间是数据仓库的关键维度,数据以时间序列的形式存储,便于进行时间点或时间段的查询分析,揭示数据随时间
Oracle
16
2024-05-31
Python实现系统时域与频域特性全面分析
在没有使用Matlab的情况下,可以利用Python进行自动控制理论相关系统的时域分析和频域分析。安装python-control包时,在Windows的cmd或Linux终端下执行pip install control命令即可。需注意,若同时安装了Python 2.7和3.x(如3.4或3.5或3.6版本),需使用pip2或pip3.4等指定版本号的命令进行安装。此外,还需安装常用于科学计算的包,如numpy、scipy、sympy、matplotlib和pandas。
Matlab
11
2024-07-25
Matlab转换频域到时域的代码 - 涡轮工具
Matlab的这段代码允许用户将频域数据转换为时域数据,特别适用于涡轮工具的应用场景。
Matlab
9
2024-09-27
MATLAB 特征值分析:计算左右特征向量和参与因子
该 MATLAB 程序提供了一种有效的方法来计算特征值分析中的左右特征向量和参与因子。它可以有效地处理不同规模和复杂度的矩阵,并生成准确可靠的结果。该程序以交互式方式运行,用户可以轻松输入矩阵并获取特征向量和参与因子的计算结果。
Matlab
12
2024-05-31