该项目利用 MATLAB 中的模拟退火 (SA) 算法求解车辆驶出问题中的电容车辆路径问题 (VRP)。通过模拟数据分析车辆行驶路线,并使用 SA 算法优化车辆路径规划,以提高效率并降低成本。
车辆驶出问题:模拟数据分析与电容VRP求解
相关推荐
CDR数据分析
利用通信CDR数据库进行后台操作和数据分析,便于深入了解通信行为模式和优化网络性能。
Access
12
2024-05-15
Python与PySpark数据分析初探
《Python与PySpark数据分析初探》是Manning Publications推出的早期访问计划(MEAP)书籍,专注于数据科学领域。本书分为三个部分:步行、慢跑和跑步。步行部分介绍PySpark的基础概念和数据操作;慢跑部分涵盖高级主题和性能优化;跑步部分挑战读者构建大规模机器学习模型。读者需要具备Python编程基础和对大数据处理的基本了解。
spark
7
2024-10-02
数据分析与统计——综述与应用
数据分析与统计——综述与应用####一、描述性统计学简介描述性统计学,又称统计描述,是统计学的基本分支之一,专注于如何有效地收集、整理和展示数据,揭示数据集的基本特征。通过收集、整理和概括原始数据,并利用图表等形式进行可视化处理,帮助我们更好地理解和解释数据。 ####二、描述性统计学的作用描述性统计学的核心功能包括: 1. 描述和总结数据的基本特征:通过各种方式对收集到的实验数据进行描述和总结。 2. 提供数据的定量分析基础:结合简单的图形分析,为后续的数据分析奠定基础。 3. 提供关于样本和度量的简单汇总:通过单个数字的形式概括数据的主要特点。 4. 为推断性统计提供准备:在数据充分的情况
统计分析
12
2024-09-14
SQL 与 Excel 数据分析工具
运用 SQL 数据库查询语言与 Excel 数据分析工具,进行数据分析。无需昂贵的工具,即可完成复杂分析。
数据挖掘
13
2024-04-30
数据分析与客户行为洞察
数据分析是关于PVA捐助者的客户细分,以更好地理解他们的行为,并在数据库中识别不同的捐助者和潜在捐助者。我们通过详细阅读数据字典来理解每个属性的含义和贡献,以建立我们的数据库。初步浏览数据集时,我们确定了多个潜在重要的变量,如收入、年龄分布以及之前的捐赠历史。这些变量帮助我们预测捐赠者的行为模式和时间间隔,从而优化我们的策略。
数据挖掘
11
2024-09-13
数据数据挖掘与R语言数据分析指南挖掘与R语言数据分析指南
这本《数据挖掘与 R 语言》书籍挺适合对数据有兴趣的朋友。书中的内容了如何使用 R 语言进行数据挖掘,涵盖了多实用的算法和技巧。你会学到如何海量数据,进行数据预、以及可视化。用 R 语言做数据还是挺直观的,书中的案例也蛮详细的,直接跟着做可以快上手。如果你对数据科学、机器学习有兴趣,这本书值得一读。
如果你已经对 R 语言有一定了解,这本书可以你进一步深化对数据挖掘技术的理解和应用。是书中的代码示例,能你更好地理解算法背后的原理。,挺适合入门的,也适合有经验的开发者做进一步提升。
数据挖掘
0
2025-06-17
企业经营数据分析的问题探讨
企业经营数据分析的基本问题
企业经营数据分析是依据研究目的,采用科学方法分析企业统计数据,揭示规律和本质,为决策提供咨询服务的过程。
企业经营数据分析的特点
定性和定量分析相结合
以统计分析方法为主的定量分析
数据分析依托于被调查研究的现象进行
算法与数据结构
9
2024-04-30
大数据分析与应用案例分析
大数据的与应用案例讲得还挺细的,尤其是对Hadoop生态的拆解,蛮适合刚入门或者想系统捋一遍的前端朋友看一看。嗯,它不是讲怎么撸代码,但对你理解大数据架构、后端接口、数据流转逻辑挺有。Hadoop 的HDFS是怎么存储 TB 级数据的,MapReduce怎么拆解计算任务都说得明明白白,还顺带提了下YARN、Hive这类常见工具,干货不少。另外,国内外的技术发展也顺手提了一嘴,虽然不是重点,但能帮你大致知道业界都怎么玩,算是长点见识。如果你最近在搞可视化平台、BI界面、或者和后端协作搭数据功能,推荐花半小时扫一遍这篇。需要动手的朋友也可以顺着下面这些链接看一看,像《构建大数据 hadoop 分布
spark
0
2025-06-16
多维数据分析:切片与切块
切片和切块技术使用户能够更改数据维度并选择感兴趣的数据子集进行分析。
这种分析方法涉及多个维度和多个数据项类别,揭示:
典型的业务行为和规则
例外事件
异常活动
算法与数据结构
9
2024-05-31