详细解析了线性判别分析(LDA)与主成分分析(PCA)的特征降维原理与方法,并结合实际分类示例,使用matlab进行了详细演示,展示了如何利用matlab生成散点图。
详解LDA与PCA的特征降维方法及matlab实例演示
相关推荐
PCA与LDA方法的人脸识别matlab实现
这是一份完全可用的人脸识别matlab代码,采用主成分分析(PCA)和线性判别分析(LDA)方法提取特征进行识别。
Matlab
7
2024-08-17
PCA-LDA原始论文与Matlab实现
PCA和LDA的原始论文与Matlab程序实现。PCA原始论文为文字版,非常见扫描版。
Matlab
16
2024-05-19
MATLAB快速实现SVD截断与PCA降维
在MATLAB开发中,快速SVD和PCA是处理矩阵数据时常用的技术。SVD(奇异值分解)可以将任意矩阵分解为三个矩阵的乘积,其中通过截断方法可以去除不重要的奇异值,达到降维的效果。PCA(主成分分析)则是通过对数据进行协方差矩阵的特征值分解,将数据从高维空间映射到低维空间,同时保留数据的主要信息。
快速SVD实现
对于大规模矩阵,可以通过快速算法进行SVD的截断,以减少计算复杂度。在MATLAB中,svds函数允许指定截断的奇异值个数,快速得到矩阵的低秩近似。
PCA降维方法
在进行PCA时,首先需要对数据进行中心化处理(减去均值),然后计算协方差矩阵并进行特征值分解。利用MATLAB中的ei
Matlab
18
2024-11-06
MATLAB实现PCA光谱降维程序
MATLAB实现的PCA光谱降维程序,专注于光谱数据的降维处理。
算法与数据结构
8
2024-08-08
深入浅出PCA降维:主成分分析原理及实例解析
主成分分析(PCA)
主成分分析是一种强大的降维技术,能够将高维数据集简化,同时保留大部分关键信息。
PCA的工作原理
想象一下,你正在观察一堆散落在平面上的数据点。PCA的目标是找到一个新的坐标系,使得数据在新的坐标轴上的投影能够最大程度地分散开来。
第一步是找到数据变化最大的方向,这个方向被称为第一主成分。接着,找到与第一主成分正交且数据变化次大的方向,这就是第二主成分。
实例解析
假设我们有一组关于房屋面积和价格的数据,我们可以使用PCA将其降维至一维。 首先,将数据标准化,然后计算协方差矩阵。接着,找到协方差矩阵的特征值和特征向量,特征值的大小代表着对应特征向量方向上的数据方
数据挖掘
10
2024-05-19
Matlab实现矩阵特征值与特征向量计算方法详解及实例分析
详细介绍了在Matlab中实现矩阵特征值与特征向量计算的多种方法,包括幂法、反幂法、位移反幂法、雅可比方法、豪斯霍尔德方法、实对称矩阵的三对角化、QR方法以及求根位移QR方法,还涵盖了广义特征值问题的解决方案。文章为数值分析和数值代数领域的研究者提供全面的资源和实验报告分析。
Matlab
13
2024-09-26
基于Matlab的二维LDA+PCA人脸识别程序
这是一个基于Matlab开发的二维LDA+PCA人脸识别程序,可以直接使用。
Matlab
11
2024-07-23
掌握LINQ to SQL:语法详解与实例演示
深入探索LINQ to SQL的奥秘,通过丰富的实例解析,全面掌握其语法结构与应用技巧。
SQLServer
22
2024-04-29
matlab代码用于PCA特征提取-WSMetricLearningWSMetricLearning
matlab代码用于PCA特征提取
Matlab
12
2024-08-30