EstimHidden是一个专门用于非参数估计的包,适用于以下情况:1. 在观察到Z=X+noise1的卷积模型中估计X的密度;2. 在“变量误差”模型中估计函数b(漂移)和s^2(波动率),其中Z和Y遵循观察模型Z=X+noise1和Y=b(X)+s(X)noise2;3. 在随机波动率模型中估计函数b(漂移)和s^2(波动率),其中Z遵循观察模型Z=X+noise1,并且X_{i+1} = b(X_i) + s(X_i)noise2。对于噪声1的密度,我们考虑高斯('正常')、拉普拉斯('symexp')和log(Chi2)('logchi2')三种情况。
估计隐藏过程的密度、回归或方差函数的非参数估计
相关推荐
参数估计
正态分布参数估计命令:[muhat, sigmahat, muci, sigmaci] = normfit(X, alpha) (默认alpha为0.05)其中:- muhat:均值点估计- sigmahat:标准差点估计- muci:均值区间估计- sigmaci:标准差区间估计
统计分析
15
2024-05-19
参数估计-matlab数据统计分析(参数估计)
正态总体参数估计
命令:normfit(X, alpha)
显著性水平alpha缺省为0.05
返回值:
muhat:均值点估计值
sigmahat:标准差点估计值
muci:均值的区间估计
sigmaci:标准差的区间估计
Matlab
10
2024-05-25
其他分布参数估计
对于其他分布参数估计,可以采用两种方法:1. 当样本容量充分大时(n>50),根据中心极限定理,近似服从正态分布。2. 使用 MATLAB 工具箱中提供的特定分布函数进行估计:- [muhat, muci] = expfit(X,alpha):在显著性水平 alpha 下,计算指数分布数据 X 的均值的点估计和区间估计。- [lambdahat, lambdaci] = poissfit(X,alpha):在显著性水平 alpha 下,计算泊松分布数据 X 的参数的点估计和区间估计。- [phat, pci] = weibfit(X,alpha):在显著性水平 alpha 下,计算 Weibu
统计分析
13
2024-04-30
MATLAB中的参数估计方法
参数估计可以通过矩法和最大似然法来进行点估计。使用MLE函数进行常见分布的参数估计,实现了参数的区间估计。MATLAB统计工具箱提供了多种参数估计函数,详细内容请参考相关文档。
Matlab
19
2024-08-04
参数估计方法深度解析
专为医学生、临床医生和公共卫生医师打造的卫生统计学第八版学习资料,深入讲解参数估计的各种方法,助力提升统计学分析能力。
Access
20
2024-04-30
泊松分布参数估计方法比较
本研究探讨了泊松分布参数的点估计和区间估计方法,并证明样本均值是参数λ的有效估计量。此外,本研究利用贝叶斯统计分析方法,在先验分布为共轭分布的情况下,推导出最大后验密度可信区间,即最短可信区间。通过实例分析,将该区间估计方法与经典区间估计方法进行了比较。
统计分析
10
2024-05-20
基于Hessian分析的参数估计问题规模识别
本项目演示了如何利用Hessian分析识别参数估计中的规模不佳问题。项目针对非线性模型,采用数值方法进行局部线性化,并使用DERVIEST工具套件的部分功能实现。该方法原则上适用于任何非线性模型的类似分析。
Matlab
15
2024-05-29
CIR模型的应用及参数估计——Matlab开发
包含3个.m文件:第一个文件使用CIR模型模拟期限结构,第二和第三个文件进行模拟并估计模型的参数。结果展示了200次运行的均值和标准差,验证滤波器的性能。详细信息请参考http://www.bankofcanada.ca/en/res/wp/2001/wp01-15a.pdf和/或Ren-Raw Chen和Louis Scott的文章“期限结构的多因素Cox-Ingersoll-Ross模型:来自卡尔曼滤波器模型的估计和测试”(房地产金融与经济杂志27,第2期,2003年,143-172页)。欢迎提出建议或评论。
Matlab
15
2024-07-28
EM算法在GMM参数估计中的应用
高斯混合模型的参数估计通常使用期望最大化(EM)算法,这在matlab环境下尤为常见。
Matlab
12
2024-09-25