非结构化数据的巨大规模与增长速度比结构化数据快10到50倍,占据总数据量的80~90%。这种数据的异构性和多样性显著,包括文本、图像、视频和机器生成数据,具有不明显的模式和不连贯的语法。未来趋势和模式的预测分析需借助深度复杂分析如机器学习和人工智能,以实现实时而非批量式的数据处理和分析。大数据的4V特征:“大量化、多样化、快速化、价值密度低”,这些特征定义了大数据的本质。
非结构化数据的巨大规模与迅猛增长 - 大数据分析综述
相关推荐
非结构化大数据深度解析
非结构化大数据统计信息
非结构化大数据包含海量信息,对其进行深度统计分析,有助于洞察数据规律,挖掘潜在价值,为数据驱动决策提供有力支持。
统计维度:
数据规模:数据总量,不同来源数据占比等
数据类型:文本、图像、音频、视频等各类数据分布情况
数据特征:数据时间跨度、地域分布、关键词频率等
数据关系:数据内部关联性、数据与外部事件的关联等
应用场景:
商业分析:洞察市场趋势、用户行为,优化产品策略
科学研究:辅助科研探索,加速科学发现
社会治理:提升公共服务效率,促进社会和谐发展
Hive
14
2024-05-21
商业数据分析ppt大数据量增长趋势
大数据量的增长趋势显示出随着时间推移数据规模的不断扩大,这对商业数据分析具有深远影响。了解什么是大数据,以及它如何改变商业决策和市场策略。
Hadoop
12
2024-10-11
大数据分析
这本书是关于大数据分析的教科书,由斯坦福大学知名教授Anand Rajaraman和Jeff Ullman整理编写而成,内容非常实用。
数据挖掘
12
2024-10-12
PowerBI可视化大数据分析
PowerBI 的可视化能力真挺强的,尤其是面对大数据场景,响应也快,操作还直观。数据源支持多,像Excel、SQL Server、Google Analytics都能一键接入。你只要稍微了解下数据建模的基础概念,就能快速上手。PowerBI 的在线服务也蛮方便,出门在外用PowerBI Mobile看看仪表板,数据随时随地掌握。Pro 版虽然要付费,但功能确实更全,像更高频的数据刷新、更大的数据集限制,还有团队协作功能,适合需要共享报表的场景。仪表板交互性不错,可以把你觉得重要的图表钉在首页,支持复制、分享、编辑,甚至还能加上QR 码、图片、链接这些小细节。另外,PowerBI 还支持 Fl
算法与数据结构
0
2025-06-17
大数据分析与挖掘
第一章:数据分析基础理论- 数据分析概述- 大数据分析基础- 大数据预测分析
第二章:计算机数据分析SPSS Modeler- SPSS Modeler概述- SPSS Modeler节点介绍
第三章:计算机数据分析Hadoop- 大数据平台Hadoop
算法与数据结构
18
2024-04-30
基于大数据的非结构化医学图像查询癫痫病例研究
探讨了大数据技术在医学领域特别是对非结构化医学图像查询的应用,以癫痫病例研究为例。文章首先强调了大数据技术在医疗领域的关键性,并指出需要新的框架来利用这些技术。主题包括医疗大数据、Hadoop技术、数据驱动的医学、非结构化医疗数据和基于内容的医学图像查询。文章提出了如何构建一个能够高效查询海量非结构化医学数据的框架,并在癫痫领域进行了实际应用验证。框架通过结构化数据过滤临床数据仓库,并通过Hadoop分布式执行特征提取模块,完成对非结构化数据的查询。文章还讨论了Hadoop在医疗领域的性能优势及其在处理大数据方面的重要性。对于医学图像处理中的非结构化数据,文章建立了特定的模块进行特征提取,展示
算法与数据结构
7
2024-09-01
大数据分析代码
Scala 实现的大数据分析代码,包括最高在线人数、登录日志分析、付款情况分析等。
spark
15
2024-05-13
数据仓库中的外部数据与非结构化数据
数据仓库中的外部数据/非结构化数据
外部数据和非结构化数据在数据仓库中存在一些问题,例如:
访问频率:外部数据没有固定的呈现模式,难以确保数据捕获的准确性。
数据形式:外部数据的形式不规则,需要重新格式化才能满足数据仓库要求。
不可预测性:外部数据的来源多样且不可预测,难以一致获取。
除了来自文章和报告的外部数据,非结构化数据也是外部数据的重要来源,可以存储在数据仓库中,包括图像、声音等。
Oracle
19
2024-05-26
大数据分析与应用案例分析
大数据的与应用案例讲得还挺细的,尤其是对Hadoop生态的拆解,蛮适合刚入门或者想系统捋一遍的前端朋友看一看。嗯,它不是讲怎么撸代码,但对你理解大数据架构、后端接口、数据流转逻辑挺有。Hadoop 的HDFS是怎么存储 TB 级数据的,MapReduce怎么拆解计算任务都说得明明白白,还顺带提了下YARN、Hive这类常见工具,干货不少。另外,国内外的技术发展也顺手提了一嘴,虽然不是重点,但能帮你大致知道业界都怎么玩,算是长点见识。如果你最近在搞可视化平台、BI界面、或者和后端协作搭数据功能,推荐花半小时扫一遍这篇。需要动手的朋友也可以顺着下面这些链接看一看,像《构建大数据 hadoop 分布
spark
0
2025-06-16