这是一个Matlab源码,使用BP神经网络来开发一个能识别0~9数字的系统。系统界面友好,包含训练样本和含噪声的数字图片。随着技术进步,BP神经网络在数字识别领域展现出巨大潜力。
使用BP神经网络在Matlab中实现数字0~9识别
相关推荐
BP神经网络实现0-9数字识别源代码与使用说明
使用说明
第一步:训练网络
使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)
第二步:识别
打开图像(256色)进行处理。
进行归一化处理,点击“一次性处理”。
点击“R”或使用菜单找到相应项来进行识别。
识别的结果将显示在屏幕上,同时输出到文件result.txt中。该系统的识别率一般为90%。
图像预处理
也可以单独对图像进行预处理,但需按顺序执行每一步,每一步只能执行一次,具体步骤为:
256色位图转为灰度图
灰度图二值化
去噪
倾斜校正
分割
标准化尺寸
紧缩重排
注意事项:待识别的图片需与win.dat和whi.
Oracle
6
2024-11-05
使用Matlab实现BP神经网络
这篇文章介绍了如何使用Matlab编写BP神经网络的代码。案例中使用了一个包含4个变量和1500个样本的Excel表格。读者可以通过学习掌握BP神经网络在数据处理中的应用方法。
算法与数据结构
9
2024-07-16
数字识别BP神经网络源代码下载
数字识别BP神经网络源代码使用指南:首先,打开256色图像,进行归一化处理,点击“一次性处理”,最后点击“R”或通过菜单进行识别。识别结果显示在屏幕上并输出到result.txt文件。系统识别率通常为90%。进阶操作包括图像预处理步骤:256色位图转灰度图、灰度图二值化、去噪、倾斜校正、分割、标准化尺寸、紧缩重排。使用时需确保win.dat和whi.dat与图片在同一目录下。
Oracle
16
2024-08-25
数字识别神经网络BP源代码使用说明.rar
数字识别神经网络BP源代码使用说明:第一步,训练网络,使用预设训练样本进行操作。读者也可直接使用已训练好的网络参数进行识别,无需再进行训练。第二步,图像识别操作:打开256色图像,进行归一化处理,点击“一次性处理”,然后选择“R”或通过菜单执行识别操作。结果将显示在屏幕上,并输出至result.txt文件。系统的平均识别率达90%。此外,还可逐步执行图像预处理工作,包括“256色位图转灰度图”、“灰度图二值化”、“去噪”、“倾斜校正”、“分割”、“标准化尺寸”和“紧缩重排”。注意:识别图片需与win.dat和whi.dat文件置于同一目录,这两文件保存了训练后网络的权值参数。详细使用方法请参阅
Oracle
14
2024-08-10
BP神经网络MATLAB实现
经典的 BP 神经网络算法的 Matlab 实现,思路清晰、注释也还算详细,适合刚上手或者回炉的同学看看。代码直接放在.txt文件里,用起来挺方便的,不用额外解压各种奇怪格式。
用的是标准的反向传播算法,流程基本上是初始化→前向传播→误差计算→反向传播→更新权重。这些步骤代码里都写得比较直白,适合你快速理解整个过程。
比如你要做个手写数字识别的 Demo,或者搞个分类任务,用这个 BP 代码就挺合适的。跑完一遍,对神经网络训练机制大致心里就有谱了。
另外我看了下,还有一些相关的扩展资源,比如MATLAB 代码示例、优化过的版本,你可以按需下载。建议你对比几份代码看看,思路会更清晰。
哦对,如果
Matlab
0
2025-06-13
基于神经网络的数字识别MATLAB实现
基于神经网络的数字识别项目,挺适合刚接触机器学习的你上手练练手。整个流程从用MNIST数据集搞训练,到用MATLAB搭个MLP模型,思路还蛮清晰的。尤其是训练阶段的反向传播部分,讲得比较细,代码实现也不复杂,跑起来还挺顺畅。
数字识别的例子其实比较经典,多教程也都绕不开它。这个项目的好处是,不光有MATLAB的实现思路,还有评估方法、优化技巧都提了一嘴。像什么dropout、CNN、模型集成这些,想继续深挖的朋友也能找到切入口。
而且如果你之前对神经网络理解不深,文里用大白话讲了不少,比如神经元是怎么传递信息的,激活函数是干嘛的,挺接地气。基本不用担心看不懂,按着流程来一遍,搞懂数字识别不难。
Matlab
0
2025-06-16
BP神经网络Matlab实现示例
以下是我编写的BP神经网络Matlab代码示例,该代码用于模拟和训练神经网络以实现特定任务。
算法与数据结构
9
2024-08-13
bp神经网络在印刷汉字识别中的应用
本科毕业设计涉及bp神经网络在印刷汉字识别方面的研究。
Matlab
13
2024-07-27
Matlab基础BP神经网络实现
该 Matlab 代码实现了 BP神经网络,适用于 初学者 进行神经网络的学习和实践。代码清晰、简洁,易于理解和修改。通过本代码,用户可以掌握 BP 网络的基本结构、前向传播和误差反向传播算法。适合用于模式识别、数据分类等任务。适合学习神经网络的入门者使用。
Matlab
15
2024-11-06