Backup Fundamentals in Computer Experiments
备份就是制作数据库结构和数据的拷贝。在执行备份操作之前,应该做好相应的计划工作、明确备份的对象和理解备份的动态特点等。下面详细介绍这些内容。
SQLServer
11
2024-11-03
artificial_neural_networks_overview
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model)。它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
算法与数据结构
21
2024-11-01
Normalization Issues in Artificial Neural Networks-Introduction to Neural Networks Chapter 4
Normalization Issues
In neural network training, normalization is crucial to ensure consistent model performance and faster convergence. Below are key normalization methods:
Normalization Method One
E and E’
Distance metric (d) adjustments
Normalization is used to transform input data, enhancing t
Matlab
13
2024-11-05
Computer Vision A Modern Approach by Forsyth&Ponce
硬封面:693页出版社:Prentice Hall; 美国版 (2002年8月24日)语言:英语ISBN-10: 0130851981ISBN-13: 978-0130851987产品尺寸:10.1 x 8.1 x 1.6英寸产品描述:这本书的内容易于理解,提供了计算机视觉领域的总体概览,同时也提供了足够的细节来构建有用的应用程序。读者可以通过亲身体验和多种数学方法学习到实际应用中有效的技术。每本书附带的CD-ROM包含编程练习的源代码、彩色图像和示例电影。本书内容全面、最新,包括了具有实际意义或理论重要性的核心主题,话题讨论逐渐深入,并且应用调查介绍了如基于图像的渲染和数字图书馆等多个重要应
Access
18
2024-07-12
Tsinghua University Computer Center Oracle Training Materials
Oracle数据库是全球最广泛使用的商业关系型数据库管理系统之一,由美国甲骨文公司(Oracle Corporation)开发和维护。这份“清华大学计算机中心Oracle培训资料”涵盖了关于Oracle数据库的基础知识、安装配置、管理操作、SQL语言、数据备份恢复以及性能优化等多个方面的内容。下面,我们将深入探讨这些关键知识点。
一、Oracle数据库基础Oracle数据库采用客户-服务器架构,由服务器端(包括数据库实例、后台进程等)和客户端(包括SQL*Plus、Oracle Developer等工具)组成。数据库实例是由一系列后台进程和内存结构组成的,负责管理数据库的运行。
二、Oracl
Oracle
8
2024-11-06
Clustering实例集-Probability and Statistics for Computer Science
聚类算法是机器学习中的一个经典难题,核心目的是将数据划分成不同的簇,使同一簇内的对象尽相似,簇与簇之间尽不同。你听过 K-Means 算法,它的核心思想其实挺简单:随机选择 K 个中心点,根据距离最小原则,把每个点归类到最近的中心,更新簇的中心。说白了,它就是找“中心”进行反复迭代调整,直到聚类结果稳定。K-Means 的优点是实现起来比较简单,速度也挺快,适合大规模数据。不过,它有个小问题,就是需要事先定义簇的数量 K,选得不好影响效果。如果你做数据挖掘或是市场、客户细分这类工作,这个算法还挺有用的。你可以尝试着在自己的数据上跑跑看,效果蛮不错的哦!
如果你在了解聚类问题时卡住了,可以看看这
spark
0
2025-06-12
Big Data Analysis of MR and Signaling Data in LTE Networks
在当前的大数据时代背景下,LTE网络的发展带来了大量的数据,为网络分析提供了全新的机遇和挑战。详细介绍了如何运用MR(测量报告)数据和信令数据进行联合分析,以解决网络用户投诉、优化网络性能等问题。
MR数据是TD-LTE系统输出的一部分,包含了三个主要部分:MRs、MRE(事件性测量统计)和MRo(原始测量统计)。MRo文件中包含了每个用户每个周期性测量事件的原始统计信息,是定位过程中使用的重点数据。信令数据通过s1接口进行分析,提供了用户事件等信息的参考,尤其是在用户级信令统计方面。
联合分析中,MR数据用于定位计算,信令数据提供详细的用户事件信息,两者结合将数据视角从小区扩展到具体地理位置
算法与数据结构
15
2024-10-31
Generating Adversarial Networks in MATLAB Counting Images
生成对抗神经网络MATLAB代码
生成对抗神经网络的MATLAB代码已被弃用。建议使用NeuralTalk2,它比旧版本快约100倍,支持在GPU上进行批处理和CNN微调。此项目包括使用Python和Numpy的源代码,通过多模态循环神经网络为图像生成描述。
项目概述
输入数据为使用Amazon Mechanical Turk收集的图像及其5个句子描述。训练阶段中,图像作为输入,RNN根据上下文预测句子中的单词,网络的参数在这一过程中不断更新。
Matlab
10
2024-11-04
Optimizing Pathfinding in Cerebrovascular Networks A MATLAB Approach
脑血管系统是一个复杂的血管网络,为大脑提供重要的营养和氧气。这种系统易于遭受出血、感染、血栓等损伤,常常需要进行脑部手术。然而,手术时通常无法直接进入手术地点,因此必须寻找替代入口点和路径。提出的系统利用MRA图像上的图像处理和路径查找技术,帮助医生/外科医生找到脑血管系统中两点之间的最短距离。论文链接:ACM Paper
Matlab
13
2024-11-03