(4) Start the database to MOUNT state. (5) Modify the database's archive mode (from non-archive to archive mode) SQL> alter database archive log; Database altered. (6) Open the database SQL> alter database open; Database altered. (7) Validate the correctness of archive parameter settings SQL> archive log list; Database log mode: archive mode, automatic archive: enabled, archive destination: E:\Oracle\ora92\RDBMS, earliest log sequence: 58, current log sequence: 60. SQL> The above display indicates that the database is running in archive mode and that the automatic archiving process is enabled. 642 Database Principles and Oracle Applications
Verify Archive Parameter Settings Using Neural Networks for Direction of Arrival Estimation
相关推荐
Digital Recognition Using Discrete Hopfield Neural Networks
使用离散Hopfield神经网络对模糊数字进行识别,并给出识别结果。可以调节数字的模糊程度,以检验识别效果。
Matlab
12
2024-11-03
Backpropagation Tutorial Training Neural Networks Using MATLAB for Pattern Recognition
本教程简要介绍了基于梯度下降和delta规则的反向传播算法下多层神经网络的训练及其数值实现。在MATLAB环境中模拟网络,训练它解决字符识别问题和著名的XOR问题。获得的结果非常有趣,表现出优异的性能。由于该算法是函数的近似,它适用于许多需要系统识别和模式分类的问题。关键词:神经网络,多层感知器,训练,模式识别,反向传播,delta规则,梯度下降。
Matlab
16
2024-11-05
artificial_neural_networks_overview
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model)。它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
算法与数据结构
21
2024-11-01
Normalization Issues in Artificial Neural Networks-Introduction to Neural Networks Chapter 4
Normalization Issues
In neural network training, normalization is crucial to ensure consistent model performance and faster convergence. Below are key normalization methods:
Normalization Method One
E and E’
Distance metric (d) adjustments
Normalization is used to transform input data, enhancing t
Matlab
13
2024-11-05
Data Normalization for Neural Networks A Beginner's Guide
数据归一化将数据映射到[0,1]或[-1,1]或其他区间。为什么归一化? 1. 输入数据单位不一样,有些数据的范围特别大,导致神经网络收敛慢,训练时间长。 2. 数据范围大的输入在模式分类中的作用可能偏大,范围小的作用可能偏小。 3. 由于输出层激活函数的值域有限制,需将数据映射到激活函数的值域。
Matlab
14
2024-11-03
Implementing RBF Neural Networks for Nonlinear System Identification in MATLAB
在这个模拟中,我为非线性系统的零阶近似实现了RBF-NN。模拟包括蒙特卡罗模拟设置和RBF NN代码。对于系统估计,使用具有固定中心和扩展的高斯核。而RBF-NN的权重和偏差使用基于梯度下降的自适应学习算法进行优化。引文:Khan, S., Naseem, I., Togneri, R.等。电路系统信号处理(2017) 36: 1639. doi:10.1007/s00034-016-0375-7 https://link.springer.com/article/10.1007/s00034-016-0375-7
Matlab
9
2024-11-04
Implementing Custom Neural Networks 43MATLAB Case Studies for Personalized Neural Network Modeling and Simulation
This file focuses on Convolutional Neural Networks within MATLAB. It presents 43 case studies that explore customized neural network implementation, particularly in the context of personalized neural network modeling and simulation. Each case provides detailed steps, explanations, and MATLAB code ex
Matlab
13
2024-11-05
Gaussian White Noise MATLAB Code-PE-GAMP with Built-in Parameter Estimation
高斯白噪声 MATLAB 代码示例:
% 生成高斯白噪声
mu = 0; % 均值
sigma = 1; % 标准差
N = 1000; % 样本数
noise = mu + sigma * randn(N, 1);
% 绘制噪声信号
figure;
plot(noise);
title('Gaussian White Noise Signal');
xlabel('Sample Index');
ylabel('Amplitude');
此代码用于生成和可视化高斯白噪声信号,并可以在后续的图像处理算法中应用。
Matlab
8
2024-11-03
Face Detection-Face Recognition Using Combined Neural Network
人脸识别的 PCA+神经网络组合方案,确实挺实用的,尤其是你想搞点高效又好理解的方案的时候。在这个项目里,先用PCA降维,把人脸图像精简成几个关键特征,再丢给神经网络做识别,思路清晰,效果也挺稳。训练流程就按标准神经网络那一套来,前向传播、反向传播,权重迭代优化,熟悉的话快就能上手。输入的特征向量是 PCA 后的结果,噪声少、计算快,识别起来也更准。MATLAB用得也挺巧,princomp搞 PCA,feedforwardnet建模型,train训练模型,sim预测。整体下来,结构清晰、代码量适中,适合拿来改着用或者当入门教材。压缩包Onlyface.zip里资源还蛮全,代码+示例+文档一应俱
Matlab
0
2025-06-14