提出了两种新颖的特征选择算法。第一个是过滤方法,而第二个是包装方法。两种算法都依赖于多目标优化中的拥挤距离来衡量特征的重要性,对特征进行有效排序。较少拥挤的特征在目标属性(如类标签)上表现出更大的影响力,从而优化了特征选择的精度。实验结果验证了所提算法在不同数据集上的有效性和鲁棒性,展现了其在复杂场景中的适应能力。
基于拥挤距离的特征选择算法开发过滤与包装方法解析
相关推荐
基于特征聚类集成技术的组特征选择方法
特征选择是模式识别和机器学习领域中不可或缺的技术,从一组特征中挑选出最有效的以降低特征空间维度。在当前海量高维数据的背景下尤为重要,通过选择合适的特征选择算法,可以去除不相关和冗余特征,提升学习算法的泛化性能和运行效率。特征选择广泛应用于文本分类、生物信息学和信息检索等领域。
数据挖掘
17
2024-07-17
基于能量的集成特征选择方法(2012年)
特征选择是机器学习和数据挖掘领域的关键问题之一,而特征选择的稳定性也是目前的一个研究热点。基于能量学习模型,分析了基于局部能量的特征选择方法,并根据集成特征选择的原理,对基于局部能量的特征排序结果进行集成,以提高算法的稳定性。在现实数据集上的实验结果表明,集成特征选择可以有效提高算法的稳定性。
数据挖掘
15
2024-08-08
特征选择的计算方法
这本最新的CRC数据挖掘系列丛书介绍了特征选择的前沿思想和算法。
数据挖掘
11
2024-07-24
基于邻域辨别力的特征选择方法
特征选择作为模式识别、机器学习和数据挖掘的关键预处理步骤,其重要性不言而喻。邻域作为分类学习中的核心概念,能够有效区分决策不同的样本。我们提出一种新的邻域辨别力指数,用于量化邻域关系中的差异信息,进而反映特征子集的区分能力。区别于传统的基于邻域相似度的方法,该指数直接利用邻域关系的基数进行计算。为了全面捕捉多个特征子集组合带来的区分信息变化,我们进一步扩展了辨别力指数,引入了联合辨别力指数、条件辨别力指数以及互信息辨别力指数。这些扩展指标与香农熵及其变体具有相似的性质。针对实值数据的分析,我们在辨别力指数中引入了一个名为“邻域半径”的参数。基于提出的辨别力指数,我们定义了候选特征的显著性度量,
数据挖掘
13
2024-05-21
基于快速聚类的髙维数据特征选择算法
这篇论文探讨了一种针对高维数据的特征选择算法,该算法利用快速聚类技术提高效率,为数据挖掘领域的学者和实践者提供了有价值的参考。
数据挖掘
14
2024-05-25
特征选择节点模型页签解析
特征选择节点模型页签 主要用于配置特征选择算法的参数,控制特征选择过程。 该页签提供多种选项,允许用户根据数据特性和分析目标,灵活调整特征选择策略,以构建高效且泛化能力强的预测模型。
数据挖掘
12
2024-05-23
Scikit-Feature特征选择与算法评估库
Scikit-feature 是由亚利桑那州立大学数据挖掘和机器学习实验室开发的 Python 开放源代码库(GNU通用公共许可证v2.0)。该库为特征选择提供了广泛的支持,是一个集成研究、比较、评估的应用平台。其核心目的是共享在特征选择领域广泛使用的算法,方便研究人员和从业人员对新算法进行实证评估。\
由于项目开发的暂时停止和 scikit-learn 的更新,库中的一些模块可能已贬值。若恢复更新,开发者将会评估是否将此分叉项目重新集成到原始项目中。\
分叉的项目信息:项目站点\
原始 scikit-feature 项目信息:项目站点\
文档链接
数据挖掘
8
2024-10-25
Web挖掘与文本分类中的特征选择算法
面对海量Web数据,如何高效处理和分析成为关键。特征选择算法作为数据挖掘、文本分类以及Web分类的核心技术之一,为我们提供了有效解决方案。通过筛选最具代表性的特征,该算法可以降低数据维度、提高模型效率,并提升分类精度。
数据挖掘
18
2024-05-25
信息增益率与随机森林特征选择算法
在数据挖掘、机器学习和模式识别领域,特征选择是一个至关重要的问题。针对传统信息增益在类和特征分布不均时存在的偏好问题,本研究提出了一种基于信息增益率和随机森林的特征选择算法。
该算法融合了filter和wrapper模式的优势,首先从信息相关性和分类能力两个方面对特征进行综合度量,然后采用序列前向选择(SFS)策略进行特征选择。算法以分类精度作为评价指标对特征子集进行度量,最终获得最优特征子集。
实验结果表明,该算法不仅可以有效降低特征空间维度,还能提升分类算法的分类性能和查全率。
数据挖掘
21
2024-05-21