特征分类

当前话题为您枚举了最新的 特征分类。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

BP神经网络数据分类:语音特征信号分类
本案例使用BP神经网络进行数据分类,针对语音特征信号进行分类。提供神经网络样本数据和Matlab源代码。
Matlab程序分类特征选择GUI
作者:吴子清(乔治)。这个项目提供了一个基于Matlab的GUI,用于预处理Kaggle竞赛数据,进行功能选择和分类方法测试,特别是Santander客户满意度。运行后可评估分类性能的平均AUC值,并生成测试数据集的结果csv文件。包含两个主要文件Customer_GUI.m和Customer_GUI.fig,以及三个数据文件:train.mat,test.mat和ID.mat。运行简单,适用于Matlab竞赛者。
人脸图像特征提取与分类算法比较
人脸图像特征提取使用支持向量机、线性判别分析和四层前馈神经网络进行图像分类。通过训练支持向量机对来自CIFAR-10数据集的10个图像类别进行分类,实现了62.7%的最高准确率。实验探讨了使用PCA和LDA的非传统组合是否优于单独使用这两种方法。此外,测试了在有监督的类质心初始化下,使用聚类方法(如k均值和GMM)进行分类。Matlab要求包括:FDA LDA多类(1.7版)、计算机视觉系统工具箱(8.0版)、神经网络工具箱(11.0版)、统计和机器学习工具箱(版本11.2)。确保在计算机上运行时,CW2Data.mat与Matlab脚本位于同一文件夹中,按顺序运行Matlab步骤1至8。我们
matlab代码PCA特征提取-Autonomous-EV分类:自主电动汽车分类
利用Python库pyAudioAnalysis,可以使用PCA特征提取的Matlab代码进行音频特征提取、分类、分割和应用。在库中添加神经网络模型,可使用神经网络训练和测试音频信号,取代现有的SVM和KNN。 训练:python audioAnalysis.py trainClassifier -i data/7/data/9/ --method neuralnet -o NeuralModel/79New.ckpt 测试:python audioAnalysisRecordAlsa.py -recordAndClassifySegments 20 out.wav NeuralModel/7
基于特征子空间模型的文本分类算法
基于发现特征子空间模型的文本分类算法,挺有意思的一个方法。简单说,就是在传统训练+分类的套路上,多加了一步自动反馈。模型自己会“反思”,用自己的判断来修正分类效果。嗯,听起来像是“会学习”的分类器,效果自然也就更稳更准。自动反馈机制的设计,适合那种样本动态变化的场景,比如新闻推荐或者评论监控。一开始效果不理想?没关系,后面它自己越跑越准。自学习这个特性,蛮适合做持续训练的系统。还有一个点挺赞:它给了个反馈阈值的算法,不用你瞎猜怎么设。对搞前端数据的来说,预文本、丢进模型,再拿到分类结果,用起来还是蛮流畅的。响应也快,代码也不复杂。你如果在做文本分类相关的功能,比如做个后台内容管理工具、自动标注
二维特征数据分类方法探讨
这篇文章基于Matlab,介绍了对二维特征数据的分类方法。作者通过实现对两类图片的分类,探讨了在实际应用中的简单应用。
K-means电网用户标签特征分类缺陷检测
基于 K-means 的电网用户标签分类思路还挺有意思的,尤其是在做特征挖掘的时候。这套方法用聚类把用户数据先粗分一波,再用加权策略对标签精修,检测逻辑还挺巧妙,尤其适合做大数据量下的分布式。如果你也碰到特征识别误差大的问题,这招可以试试,效果比传统方式要稳。
基于振动特征的木材种类分类模型AI应用
使用MATLAB的NI数据采集硬件实时采集数据,结合深度学习工具箱,基于振动特性对墨西哥黑檀木、硬枫木和红木进行分类。演示中还应用小波工具箱计算实时数据样本的连续小波变换(CWT)图像,用于CNN模型的训练。
情感识别技术的特征提取与分类方法
包括使用特征降维的语音情感识别、基于支持向量机的语音情感识别、基于神经网络的语音情感识别以及基于K近邻分类算法的语音情感识别程序。
MATLAB神经网络BP神经网络数据分类与语音特征信号分类案例分析
MATLAB神经网络43个案例分析BP神经网络的数据分类-语音特征信号分类.zip