规则生成
当前话题为您枚举了最新的规则生成。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
从决策树生成规则集
可以指定选项将决策树转换成规则集:
规则集名称:指定新生成规则集节点的名称
创建节点位置:选择新生成规则集节点的位置,可以选择工作区、GM选项板或两者
最小实例数:指定生成的规则集中保存的规则的最小实例数,低于指定值的规则将不显示
最低置信度:指定形成的规则集中保存的规则的最低置信度,低于指定值的规则将不显示
数据挖掘
16
2024-05-12
生成的规则集汇总页签-Clementine应用指南
生成的规则集汇总页签整理了规则集模型生成的结果,以方便进一步分析和使用。
数据挖掘
14
2024-04-30
基于遗传算法的数据挖掘规则生成系统评价
利用遗传算法优化数据挖掘算法,提高信息挖掘效率。
数据挖掘
12
2024-05-20
关联规则和动态关联规则简介
本内容适合于数据挖掘方向的硕士研究生阅读学习,对关联规则与动态关联规则做了简介。
数据挖掘
12
2024-04-30
选择“排序规则设置”。
选择“排序规则设置”。
SQLServer
17
2024-05-01
列名限定规则
为了避免歧义,WHERE子句中列名需要以表名前缀进行限定。表名前缀可以提高查询性能。对于表中不同的列名,可以使用别名进行标识。
Informix
20
2024-05-28
Cobar规则优化指南
阿里巴巴公开了一份名为《Cobar规则 - Alibaba Open Sesame.pdf》的资源下载文件,帮助用户优化Cobar数据库的使用规则。该指南详细介绍了如何调整和优化Cobar数据库的规则以提高性能和效率。通过遵循这些优化建议,用户可以更好地管理和利用其数据库资源。
MySQL
12
2024-07-17
生成规则集模型-数据挖掘原理与SPSS-Clementine应用宝典的应用
生成规则集模型的节点代表了由关联规则建模节点(Apriori or GRI),或生成C5.0节点,或C&RT节点发现的规则,用于预测特定输出字段。未精炼的规则节点生成的规则集节点可以在流中生成预测。用户可通过图标将规则集节点模型加入流中,并通过右键点击流选择节点放置位置。连接数据后,用户可以使用规则集节点模型进行预测,输入数据需与训练数据相同。执行包含规则集节点的流时,该节点将添加两个新字段,存放预测值和置信度。关联规则集的预测字段前缀为$A-,置信字段前缀为$AC-。C5.0规则集的预测字段前缀为$C-,置信字段前缀为$CC-。C&RT规则集的预测字段前缀为$R-,置信度字段前缀为$RC-。
数据挖掘
9
2024-09-13
Oracle语句优化规则
本规则用于优化Oracle语句,提高检索速度和语句合理性,减少系统运行时间。
Oracle
19
2024-05-13
常变量与命名规则
变量名称:数字、字母、下划线;首字母为字母;大小写敏感;最多19个字符。
Matlab
12
2024-05-01