数据仓库设计
当前话题为您枚举了最新的 数据仓库设计。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
数据仓库设计指南
第1章探讨了决策支持系统的发展,从直接存取存储设备到个人计算机和第四代编程语言技术的演化,以及数据抽取程序和自然演化体系结构中的问题。章节还涵盖了体系结构设计环境、用户身份、开发生命周期、硬件利用模式和重建工程的建立。监控数据仓库环境和总结也在此章进行。
Oracle
9
2024-09-22
Oracle 数据仓库设计与应用
本幻灯片演示详细阐述了使用 Oracle 设计和部署数据仓库的方法。
Oracle
10
2024-05-25
数据仓库概念与设计详解
数据仓库的概念涵盖了主题领域的标识和关系,明确了模型的边界,实现了原始数据与导出数据的有效分离。在每个主题领域中,键码属性及其分组关系被清晰定义,处理多重出现的数据及其类型。
Oracle
8
2024-08-27
数据仓库
全面的数据集合,涵盖广泛主题,满足您的各种需求。
DB2
23
2024-05-15
数据仓库设计方法与建模概述
数据仓库设计方法
数据仓库设计方法主要有三种:
自上而下(Top-Down): 该方法从整体架构出发,首先定义企业级的数据模型,然后逐步细化到各个主题域和数据 marts。
自底而上(Bottom Up): 该方法从现有数据源出发,逐步整合和构建数据仓库。
混合方法: 该方法结合了自上而下和自底而上的优点,在实际项目中更为常见。
数据仓库建模
数据仓库建模是数据仓库设计的重要环节,常用的数据仓库模型包括:
星型模型
雪花模型
星座模型
数据挖掘
16
2024-05-24
数据仓库模型的设计策略
数据仓库模型设计遵循“自顶向下、逐步求精”的方法论原则。设计过程分为三个关键阶段:首先是概念模型阶段,用于高度抽象和业务范围定义,主要涵盖客户、服务使用、账务、结算、资源、客服和营销等八大主题域。其次是逻辑模型阶段,精细化业务需求并定义实体间的关系。最后是物理模型阶段,转化为具体数据库模式,确保高效存储和快速查询。
算法与数据结构
13
2024-07-18
数据仓库简介
数据仓库是主题导向、整合、相对稳定、反映历史变化的数据集合。它是一种“数据存储”体系结构,支持结构化、启发式、标准化查询、分析报告和决策支持。
算法与数据结构
15
2024-05-16
数据仓库实例
该数据仓库实例可从网络中获取。
Access
22
2024-05-25
数据仓库应用的范围-BI数据仓库培训
在数据仓库应用的范围中,IT人员为业务用户开发支持独立分析的系统,满足不同用户群体的需求。主要应用包括:
专业分析人员:为这些用户提供复杂分析工具和资源。
标准报表:针对常规数据分析需求,提供稳定的报表输出。
即席查询分析:为用户提供灵活、实时的查询分析功能,支持即时决策。
复杂分析:通过深度分析工具,帮助专业人员进行数据挖掘和高级分析。
Oracle
11
2024-11-05
客户发展数据仓库设计与挖掘应用
客户数据的多维切片,配上经典的数据仓库设计,读起来还挺有意思。嗯,主要讲的是怎么按性别、年龄、入网时间这些维度,把用户分成不同的群体,再他们用服务的习惯。这个套路在电信行业常见,数据一多,用肉眼看真没啥用,得靠数据仓库那一套来帮你分门别类。
客户群的自然属性分类挺直观的,比如性别、年龄段,还有那种用户类型——像公费、私人,这些标签在建模时都有用。你要是做用户画像或者客户细分,拿这些字段来喂模型,效果还不错。
数据仓库设计这部分也讲得挺扎实,没整太玄的词,主要就是围绕业务来建模,比如用星型模型,先搭好维度表和事实表的框架,再根据你要的指标一步步填。你只要理解了它的出发点是为了方便,整个设计就不难
数据挖掘
0
2025-06-25