医疗保健

当前话题为您枚举了最新的医疗保健。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

医疗保健中的预测分析与建模研究论文
预测的核心,是通过各种算法和数据建模方法,把一堆历史数据翻来覆去地“刨根问底”,目的就一个:提前看清未来。医疗保健里的预测建模,应用场景其实挺多的,比如预测疾病爆发、优化病床分配,甚至还能帮医院节省资源、提升效率。数据挖掘和机器学习这些技术,就像幕后军师一样,帮医生和管理者提前做好准备。这篇论文讲得比较系统,先捋了一遍预测的原理,结合医疗案例讲了建模怎么落地。像是用深度学习去预测病人复发率,或者门诊流量高峰,这些在实际场景里都挺实用。哦对了,如果你对这类模型建模比较感兴趣,推荐你顺手看看这几个:基于智能数据挖掘的经济预测与、数学建模预测方法,里面有不少思路可以借鉴,代码也不难上手。如果你平时用
改善睡眠保健食品专利分析
研究目的:对我国授权发明专利类改善睡眠保健食品进行分析,为保健食品研发提供参考数据。研究方法:利用专利数据库检索相关专利数据,统计分析专利数量、申请人、技术领域等指标。研究结果:截至2023年,我国共授权改善睡眠保健食品发明专利103件,主要申请人为高校和企业,技术领域集中在食品营养和中药领域。研究结论:我国改善睡眠保健食品专利技术发展迅速,存在一定创新潜力。
医疗信息系统
易迅医疗信息系统以医生为核心,注重满足其需求。利用软件系统帮助医生高效、智能、安全地完成非主观性的临床工作。系统通过积累临床经验知识,并促进医生间的经验交流和信息共享,提升医疗水平,让医生解脱重复性的工作。
医疗数据主控
这些数据经过Matlab处理,专门用于图像处理。
Spark医疗数据预处理
Spark 的数据预能力真的是蛮强的,是在医院这种结构复杂又数据量大的场景下,表现挺稳定。你可以把结构化的就诊记录、非结构化的检查报告,统统扔进去,跑个 RDD 转换或者用 DataFrame 清洗一下,效率还不错。 Spark 的分布式计算在多节点下跑预任务,几百万条数据压力也不大。比如用withColumn搞字段拆分,用filter剔除无效记录,用groupBy做一些分组统计,整个链路下来,代码量不多,可维护性也不错。 如果你对数据预这一块还想扩展一下思路,我给你找了几个还不错的资料: 基于 Spark 的交互式数据预:讲得比较细,适合深入了解。 光谱数据预:主要是非结构化数据的
基于分类的医疗影像分割技术
这个程序是用M文件编写的,运行环境为Matlab,也可以转化为C++运行。它的功能是自动执行医疗影像的分割操作。
医疗机构管理系统
医疗机构管理系统是一种基于Access开发的专用软件,优化医院内部运营管理。它集成了诸如患者信息管理、医疗记录存档等功能,有效提升了医院工作效率。
分布式医疗数据挖掘
使用软件代理进行数据挖掘的参考(Hillol Kargupta, Brian Stafford, Ilker Hamzaoglu)
现代医疗机构管理系统
现代医疗机构管理系统采用MySql和JSP技术,提升医院管理效率和服务质量。
智慧医疗系统修复及优化方案
医院医疗机构健康评估网站源码KZB智慧医疗健康评估系统源码包含丰富的健康信息和图形展示功能。管理员后台提供基础信息和健康数据管理,用户后台包括个人信息管理和健康数据监测。系统开发环境为Visual Studio 2010,数据库采用SQL Server 2008。