学习算法
当前话题为您枚举了最新的 学习算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
机器学习算法1学习脑图
相对粗略的脑图,记录了第一天学习机器学习算法的思路,结构虽然不复杂,但对刚入门的你来说还是挺有参考价值的。内容覆盖了像分类、回归这些基础算法,适合做个小总结或者快速回顾。
手绘风格的脑图,重点思路比较清晰。像是把书上学到的东西做了个可视化,对理解算法结构挺有。比如你在看SVM或逻辑回归时,可以快速跳转到相关节点做联想。
推荐几个搭配阅读的资源,像这个graphkit-learn,是个挺不错的图机器学习库;还有机器学习算法实战,里头不少案例代码,照着练效果更好。
如果你想系统捋一遍机器学习的分类,可以看看机器学习算法简介及分类这篇;顺手还可以对比下PPT 版分类算法对比,图表一目了然。
使用建议
算法与数据结构
0
2025-07-05
GMM聚类算法的贪心EM学习算法
该算法采用贪心策略结合EM算法,通过优化数据与模型的匹配度,寻找数据对GMM模型的最佳匹配,从而实现基于模型的聚类。
数据挖掘
19
2024-05-01
DNNE学习算法MATLAB开发的深度神经网络集成学习算法
这个MATLAB库专门为DNNE算法设计,提供一个完整的集成学习解决方案。
Matlab
15
2024-08-02
流形学习算法综述
流形学习是一种用于从高维数据中提取低维表示的算法。它已成为模式识别、机器学习和数据挖掘领域的重要研究方向。流形学习的主要目的是发现和表征数据中的低维流形结构。算法分析和新方法的探讨是该领域持续的研究重点。
数据挖掘
14
2024-05-12
机器学习算法实战
算法实战:探索机器学习核心
本篇带您深入浅出地了解机器学习常见算法,涵盖监督学习、无监督学习和强化学习三大类别,并结合实际案例,助您快速上手算法应用。
### 监督学习
线性回归: 预测连续目标变量,例如房价预测。
逻辑回归: 解决二分类问题,例如判断邮件是否为垃圾邮件。
决策树: 构建树形结构进行分类或回归预测,例如客户流失预警。
### 无监督学习
聚类分析: 将数据分组到不同的簇中,例如客户细分。
主成分分析: 降低数据维度,提取主要特征,例如图像压缩。
### 强化学习
Q-learning: 通过试错学习最优策略,例如游戏 AI。
SARSA: 基于当前策略
算法与数据结构
18
2024-05-25
MOPSO算法学习总结
个人心得总结,整理了MOPSO算法的核心原理和应用体会。
算法与数据结构
16
2024-04-29
MATLAB学习智能优化算法
这是一个适合具有一定Matlab基础的学习者的资源,提供了30个案例分析,专注于智能优化算法的学习和应用。
Matlab
10
2024-08-01
在线学习遗忘机制算法框架
在线学习的那点事儿,应该多少听过吧?最近我看了一个带遗忘机制的算法框架,挺有意思的。它不是那种一股脑吃完数据的批量算法,而是边学边忘,专治数据漂移那一类问题,适合实时场景,比如金融风控或者日志这种。
算法与数据结构
0
2025-06-24
关联规则算法Apriori学习
来学习关联规则算法Apriori吧!
数据挖掘
22
2024-05-25
Matlab中存档算法代码学习迭代算法的应用
随着技术的不断进步,Matlab中的存档算法代码已经变得日益重要。这些代码解决稀疏线性逆问题,利用信号的零稀疏性质来估计从嘈杂和不确定测量中得出的未知信号。该项目探讨了多种迭代算法的应用,分析了它们如何利用循环展开和深度学习技术进行优化。这些脚本通常用Python编写,并且在与GPU配合使用时表现出色。适用于CentOS 7 Linux和TensorFlow 1.1,也可以使用Octave/Matlab .m文件实现。如果您对VAMP的实现感兴趣,建议查阅Matlab代码或Python代码中的相关部分。
Matlab
8
2024-09-27