搜索优化
当前话题为您枚举了最新的搜索优化。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Oracle全文搜索文档的建立和优化
在建立Oracle全文搜索文档时,需处理索引和查询结果集的优化,以提升索引结构。
Oracle
17
2024-07-24
使用Google不同搜索区域的快速网络搜索方法
随着技术的发展,Google已经在不同的搜索领域(如图片、群组等)中提供了更便捷的搜索功能。用户可以根据需要在网页、图片、论坛、新闻、Froogle以及学术界等领域进行搜索。搜索区域可以通过指定参数来优化搜索体验,如语言设置和特定页面搜索。
Matlab
12
2024-08-09
原子搜索优化算法(ASO)在优化问题中的应用与MATLAB实现
原子搜索优化(ASO)是一种用于解决优化问题的新型算法。ASO模拟自然界中原子的运动模型,通过Lennard-Jones势和键长势产生的相互作用力来模拟原子间的相互作用。该算法的核心思想是基于原子之间的相互作用力和约束力,模拟原子在空间中的运动,最终寻找最优解。ASO算法不仅简洁易实现,而且在解决复杂的优化问题时表现出较高的效率和准确性。
Matlab
17
2024-11-06
基于天牛觅食原理的优化算法:天牛须搜索
天牛须搜索算法(BAS)受天牛觅食行为启发,于2017年被提出,用于解决多目标函数优化问题。天牛依靠两根长触角感知食物气味,触角感知的气味强度引导天牛的觅食方向。如果左侧触角感知到的气味强度大于右侧,天牛就会向左移动,反之亦然。通过这种简单而有效的方式,天牛最终可以找到食物。
BAS算法与遗传算法、粒子群算法等进化算法类似,不需要了解函数的具体形式或梯度信息,就能自动进行优化。与其他算法不同的是,BAS算法只使用一个个体进行搜索,因此寻优速度更快。在天牛须算法中,天牛的位置代表待优化问题的解,触角的长度代表搜索步长。通过不断地比较两侧触角感知到的函数值,天牛不断调整自己的位置,最终找到函数的最
算法与数据结构
15
2024-05-25
布谷鸟搜索算法综述及优化研究
布谷鸟搜索算法是一种结合了生物行为特性和数学模型的元启发式群体智能搜索技术,源于布谷鸟巢寄生现象和莱维飞行模式。这一算法由澳大利亚科学家于2009年提出,解决全局优化难题,特别是那些复杂的优化问题。其核心概念包括巢寄生性和莱维飞行,前者类比于寻找最优解的过程,每个解决方案代表一个潜在的解,后者模拟了布谷鸟在寻找巢穴时的随机非均匀移动。算法的基本流程包括初始化鸟群、评估适应度、更新位置、替换优化位置和删除低质量解决方案。此外,布谷鸟搜索算法的改进集中在混合策略、参数调整、局部搜索和自适应策略等方面,以提高其搜索效率和应用范围。
算法与数据结构
18
2024-08-24
资源搜索利器
直接使用百度查找资源?不如使用插件搜集海量优质资源,操作简单,只需将插件文件上传至admin文件夹覆盖即可。
Access
14
2024-05-20
Everything:文件搜索利器
Everything 是一款小巧但强大的文件搜索工具,以其极速的搜索速度著称,让查找文件变得无比轻松。
Hadoop
9
2024-05-23
通过直接搜索优化方法设计的最小设置时间控制
通过直接搜索优化方法设计的最小设置时间控制。一种新的控制器设计方法,明确地将时间响应的稳定时间最小化。
Matlab
12
2024-08-25
第13章粒子群优化算法的全局搜索技术
粒子群优化算法(PSO)是一种全局优化算法,模拟鸟群或鱼群的集体行为,由Kennedy和Eberhart于1995年提出。该算法基于群体智能理论,在多维空间中模拟粒子的飞行和搜索,以寻找最优解。本章介绍了三种基本的PSO变体:标准粒子群优化算法、惯性权重粒子群优化算法和认知社会学习因子的PSO。提供了可运行的代码示例,帮助用户根据需要进行修改。算法应用于工程优化、机器学习和神经网络训练等领域,具有并行计算能力强的优点,但也存在早熟收敛和收敛速度慢的挑战。
算法与数据结构
9
2024-08-18
基于物理的优化算法瞬态搜索算法(TSO)Matlab开发
该算法灵感源自于开关电路中电容器和电感器的瞬态行为。瞬态搜索算法(TSO)已发表在应用智能期刊:https://link.springer.com/article/10.1007/s10489-020-01727-y
Matlab
8
2024-09-19