Decomposition Algorithm

当前话题为您枚举了最新的 Decomposition Algorithm。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Matrix Decomposition Recommendation Algorithm MATLAB Implementation
矩阵分解的推荐算法MATLAB实现,直接运行main.m
String Decomposition by Multiple Identifiers
对字符串中,存在各种特殊符号的,可同时按多种符号(或特殊符号),分解字符串,按字符位置顺序返回。
Matlab Singular Value Decomposition Solutions
很不错的Matlab代码,可以很好的解决奇异值分解问题。
Triangle Decomposition in MATLAB for Control Systems Simulation
(4) 三角分解: [L,U]=lu(A) 将 A 做对角线分解,使得 A=LU,其中 L 为 下三角矩阵,U 为 上三角矩阵。注意:L 实际上是一个“心理上”的 下三角矩阵*,它事实上是一个置换矩阵 P 的逆矩阵与一个真正下三角矩阵 L1(其对角线元素为 1)的乘积。 例: a=[1 2 3;4 5 6;7 8 9] 比较: [l1,u1,p]=lu(a) 与 [l,u]=lu(a)
Proper orthogonal decomposition and its applications.pdf
POD(Proper Orthogonal Decomposition,正交分解)是一种在工程领域广泛应用的有效且精妙的数据分析方法。在高维过程中,POD能够提供数据的低维近似描述,特别适用于实验或数值模拟数据集的模态分解需求。该方法关键在于获取一组正交基函数,以捕捉数据的主要动态特性,这些基函数通常称为经验模态。正交分解在数据压缩、噪声去除、系统识别和流体动力学等领域有广泛应用。文中详述了POD方法的三种主要形式:Karhunen-Loève分解(KLD)、主成分分析(PCA)和奇异值分解(SVD),这些方法在处理POD问题时理论上等效。KLD通过最优线性正交展开提取连续时间随机过程的特征函
GraphMaxFlow_Algorithm_Overview
1. 构造有向图 使用以下代码创建带有节点和边的有向图: cm = sparse([1 1 2 2 3 3 4 5],[2 3 4 5 6 6],[2 3 3 1 1 1 2 3],6,6); 此图包含8个节点和6条边。 2. 计算最大流 使用以下命令计算从第1个到第6个节点的最大流: [M,F,K] = graphmaxflow(cm,1,6); 3. 显示原始图结构 可视化原始有向图: h0 = view(biograph(cm,[], 'ShowWeights', 'on')); 4. 显示最大流矩阵图结构 可视化计算得到的最大流矩阵: h1 = view(biograph(F,[
Genetic Simulated Annealing Algorithm Based on Simulated Annealing Algorithm in GOAT Toolbox
本项目使用GOAT遗传工具箱完成基于模拟退火算法优化的遗传算法。通过将模拟退火算法引入遗传算法的优化过程,提升了算法在复杂问题求解中的效率。所有代码和函数都在GOAT工具箱中完成,并进行了详细注释,方便用户理解和修改。使用时,需要调用GOAT工具箱中的相关函数,确保在Matlab环境下正确运行。 Matlab编译环境使用说明: 下载并安装GOAT工具箱。 调用相关函数时,确保工具箱路径已配置。 运行代码前,检查代码中的所有依赖项。 根据需要调整优化算法的参数以适应不同的求解任务。
Implementing PCA Algorithm in MATLAB
本项目建立PCA模型,使得PCA算子可以在任意时刻应用。实现基于MATLAB的PCA算法。
BP Algorithm Improvement and Implementation in MATLAB
本论文针对BP算法,即当前前馈神经网络训练中应用最多的算法进行改进,并在MATLAB中实现。
Algorithm K Parameter in MATLAB Development
在本节中,我们将讨论k的表示和应用。k是一个重要的参数,它在许多算法中起着关键作用。通过正确设置k,可以显著提升模型的性能和准确性。