医疗分析
当前话题为您枚举了最新的 医疗分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
医疗信息系统
易迅医疗信息系统以医生为核心,注重满足其需求。利用软件系统帮助医生高效、智能、安全地完成非主观性的临床工作。系统通过积累临床经验知识,并促进医生间的经验交流和信息共享,提升医疗水平,让医生解脱重复性的工作。
SQLServer
14
2024-08-17
智能医疗商业计划模板及其市场前景分析
智能医疗是医疗行业的重要发展方向,利用大数据、人工智能和物联网等先进技术提升医疗服务效率、质量和安全性。本模板适用于制作智能医疗领域的商业计划书,涵盖行业现状、产品介绍(如智能诊断设备、远程监测系统)、研发挑战与解决方案、市场分析及商业化策略。设计灵活、内容丰富,吸引投资者和合作伙伴的关注与参与。
数据挖掘
9
2024-08-03
医疗数据主控
这些数据经过Matlab处理,专门用于图像处理。
算法与数据结构
16
2024-07-13
基于RoughSet的医疗数据挖掘应用分析(2008年)
利用基于区分矩阵的计算方法简化了从病历样本数据出发的医疗信息处理过程,使其更为高效和便捷。所得的产生式分类规则简明易懂,具有实际应用的参考价值。
数据挖掘
15
2024-07-16
医疗统计分析专家系统——研究论文
专家系统通过提供专业知识,提高了决策者和技术人员的生产力。健康信息学研究临床知识统计分析的创建、共享和应用,是医疗保健实践的基础。随着信息学研究的深入,它将在医学实践中扮演越来越重要的角色。
统计分析
22
2024-04-29
医疗保健中的预测分析与建模研究论文
预测的核心,是通过各种算法和数据建模方法,把一堆历史数据翻来覆去地“刨根问底”,目的就一个:提前看清未来。医疗保健里的预测建模,应用场景其实挺多的,比如预测疾病爆发、优化病床分配,甚至还能帮医院节省资源、提升效率。数据挖掘和机器学习这些技术,就像幕后军师一样,帮医生和管理者提前做好准备。这篇论文讲得比较系统,先捋了一遍预测的原理,结合医疗案例讲了建模怎么落地。像是用深度学习去预测病人复发率,或者门诊流量高峰,这些在实际场景里都挺实用。哦对了,如果你对这类模型建模比较感兴趣,推荐你顺手看看这几个:基于智能数据挖掘的经济预测与、数学建模预测方法,里面有不少思路可以借鉴,代码也不难上手。如果你平时用
数据挖掘
0
2025-06-15
Python爬虫实战项目医疗资源采集与可视化分析
医疗资源的数据采集一直是个麻烦事儿,但这个 Python 实战项目整得还挺全。采集+清洗++可视化,一条龙流程,适合想练手爬虫又不想从 0 搭环境的你。核心用的是Python 爬虫,数据存 Mongo,前端用Echarts搞了个数据大屏,效果还蛮炫的。
项目结构清晰,spider模块里就是一堆采集脚本,能抓医院、药店等医疗资源信息。用了requests、lxml这些常用库,代码逻辑还算清楚,照着走一遍你就会了。
采完的 JSON 数据会统一存进 MongoDB,查询快,维护也简单。后面做数据那块,用了Pandas做了一些统计,比如不同地区医院数量、人均医疗点等,实用场景挺多的。
数据大屏这块值
统计分析
0
2025-06-24
Tableau数据分析工具在医疗领域的应用探索
随着数据分析技术的进步,Tableau在医疗行业中的应用越来越广泛。它提供了强大的数据可视化功能,帮助医疗专业人士更好地理解和分析医疗数据,从而改善患者护理和医疗决策。通过可视化分析,医疗机构可以实现数据驱动的精准医疗,提升医疗服务质量和效率。
spark
10
2024-07-22
基于二次主成分分析的医疗电子诊断模型
在医疗电子领域,病情确诊往往涉及众多变量,导致分析过程复杂化。为了简化分析,降低变量个数并保留关键信息,可以采用主成分分析方法。主成分分析通过线性变换,将多个相关变量转化为数量更少且互不相关的变量,这些新变量被称为主成分。
二次主成分分析则是在主成分分析基础上进一步优化,通过对主成分进行二次降维,提取更加精炼的诊断信息,从而提高病情确诊的准确性和效率。
统计分析
11
2024-05-15
Spark医疗数据预处理
Spark 的数据预能力真的是蛮强的,是在医院这种结构复杂又数据量大的场景下,表现挺稳定。你可以把结构化的就诊记录、非结构化的检查报告,统统扔进去,跑个 RDD 转换或者用 DataFrame 清洗一下,效率还不错。
Spark 的分布式计算在多节点下跑预任务,几百万条数据压力也不大。比如用withColumn搞字段拆分,用filter剔除无效记录,用groupBy做一些分组统计,整个链路下来,代码量不多,可维护性也不错。
如果你对数据预这一块还想扩展一下思路,我给你找了几个还不错的资料:
基于 Spark 的交互式数据预:讲得比较细,适合深入了解。
光谱数据预:主要是非结构化数据的
spark
0
2025-06-15