Spark集成

当前话题为您枚举了最新的 Spark集成。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Eclipse开发Spark集成环境
手把手搭建Eclipse和Spark的集成环境,解决新手和学生遇到的问题,助你无忧开发Spark项目。
Flume与Spark Streaming集成资源包
Flume与Spark Streaming集成资源包 本资源包包含Flume与Spark Streaming集成所需的必要文件: Spark Streaming整合Flume所需安装包 Spark Streaming拉取Flume数据的flume配置文件(.conf) Flume向Spark Streaming推数据的flume配置文件(.conf)
Flume与Spark Streaming的集成实现
在这个压缩包中包含了用于实现Flume监控文件夹中内容变化的关键组件:commons-lang3-3.3.2.jar、spark-streaming-flume_2.10-1.6.0.jar以及scala-compiler-2.10.5.jar。接着,Spark Streaming利用这些组件对数据进行实时分析。
Spark Streaming 与 Kafka 集成 JAR 包
提供 Spark Streaming 与 Kafka 集成所需要的 JAR 包: spark-streaming-kafka-0-8_2.11-2.4.0.jar
Spark 2.4.2 与 Hadoop 2.7 集成包
这是一个 Spark 2.4.2 版本与 Hadoop 2.7 预先构建的集成包。它可以开箱即用,简化 Spark 环境的部署。
支持Spark Cache语法的Atlas集成方案spark-atlas-connector
我们主要使用Spark进行离线数仓的开发。由于Atlas官方并未提供对Spark的支持,我们调研了业内一些方案,发现部分第三方插件可以支持Spark的Atlas集成,如spark-atlas-connector-assembly-0.1.0-SNAPSHOT.jar。然而,这些插件并未支持cache语法。当前版本的本包专注于实现Atlas对Spark cache语法的支持,使用方法与spark-atlas-connector-assembly-0.1.0-SNAPSHOT.jar一致。
Spark 1.4.0 集成开发环境依赖库
本资源库提供 Spark 1.4.0 集成开发环境所需的依赖库文件,包括: spark-assembly-1.4.0-hadoop2.6.0.jar jcommon-1.0.16.jar jfreechart-1.0.3.jar joda-time-2.2.jar 这些依赖库文件可用于构建和运行 Spark 应用程序,配合相关 Scala 集成开发环境使用。
MongoDB+Spark大数据集成框架
MongoDB 和 Spark 的结合,简直是大数据领域的绝配。MongoDB作为一个高性能的 NoSQL 数据库,擅长存储和查询非结构化数据,响应速度快,适合需要快速读写的业务场景。而Spark则是一个强大的大数据框架,可以高效地进行批、流、机器学习等多种操作。如果你需要快速大规模的数据,同时又要保持高效的实时存储,MongoDB 和 Spark 联手后,能给你带来超强的性能体验。具体来说,MongoDB能 TB 到 PB 级别的数据,并且支持自动复制,能满足高并发和高可用性需求。而Spark能快速计算大数据集,支持实时流数据,减少了延迟。如果你把这两者结合起来,用 MongoSparkCo
Apache Spark Streaming与Azure Event Hubs集成指南
Apache Spark Streaming与Azure Event Hubs集成指南提供了详细的方法,帮助用户理解如何高效处理和分析实时数据流。Azure Event Hubs作为微软的大数据服务,提供高吞吐量的数据摄取能力,非常适合大规模实时数据处理场景。集成的关键在于Spark Streaming的DStream概念,它使应用程序能够以微批处理的方式处理连续的数据流。Spark Streaming与Event Hubs的结合不仅提供了简单的并行性,还确保了数据处理的顺序性,并且能够轻松访问序列号和元数据。部署和连接到Event Hubs的具体步骤将在文档的“Deploying”子节中详细
Kerberos安全认证示例集成Spark Kafka Hive HDFS
Kerberos 的安全认证 demo 适合刚接触分布式系统安全的朋友。这个项目集成了 Hadoop 生态圈里的主流组件,包括 Spark、Kafka、Hive、HDFS 等,展示了它们如何在 Kerberos 环境下实现安全认证。如果你对 Kerberos 的票证机制还一头雾水,通过这个示例操作一遍,保证思路清晰多。比如,Spark需要配置spark.security.credentials.kerberos.enabled为true,再指定principal和keytab路径,就能搞定和 HDFS 的安全通信。还有,Hive的服务端要配置hive.server2.authenticatio