Internet Information Services

当前话题为您枚举了最新的 Internet Information Services。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Internet Access Points示例 v2.0
本C++代码示例演示了应用程序如何打开Internet连接。该应用程序打开一个预定义的Internet接入点(IAP);通过设备的设置工具或接入点处理对话框配置接入点。示例还展示了如何按网络类型对现有IAP进行分组列出;即如何向用户仅显示支持分组数据(PSD)或电路交换数据(CSD)的IAP。
Image Registration Using Mutual Information with Optimization Toolbox
[使用优化工具箱的二维互信息匹配]这是新墨西哥大学的Kateryna Artyushkova编码的IP工具箱用户使用互信息更新的自动图像配准。对象函数'image_registr_MI.m'最初是由人编码并由我修改的。我使用优化工具箱为完整的图像配准添加了一个比例因子。因此,运行此程序需要优化工具箱。zip文件包含三个文件:- opti_MI_scaling.m %主要代码- image_registr_MI.m %对象函数- image.mat %图像矩阵。在“image.mat”中,IM1和IM2仅用于示例目的。- IM1:230 X 230 MRI 8位图像- IM2:512 X 512
Internet网络的宏观结构和特性分析(2011)
经过广泛的网络计量统计分析后,发现Internet并非随机分布,而是展现出稳定的宏观有序结构。它不仅具备复杂的超链接网络,还呈现出明显的无标度和小世界特性。这表明,Internet背后隐藏着自组织的稳定规律,与其表面混乱现象形成鲜明对比。
Reporting Services 专家指南
SQL Server Reporting Services 专家级教程,手把手指导您掌握 Reporting Services。
AdventureWorks 2008 Analysis Services Project
《SQL Server 2008报表服务从入门到精通》是一本帮助读者深入理解和熟练掌握SQL Server 2008报表服务的专著。在这个项目中,我们将探索与数据分析、数据仓库和商业智能相关的关键技术。AdventureWorks是一个广泛应用于SQL Server教学和实践的示例数据库。重点是利用Analysis Services构建数据立方体,支持多维数据模型设计和MDX查询语言应用。报表服务(SSRS)与Analysis Services集成,用于创建交互式、定制化的业务报表,涵盖销售分析、客户行为、产品性能等多个方面。数据挖掘技术也在项目中应用,以发现数据中的模式和趋势。
通过ODBC实现数据库与Internet的安全结合
MyODBC可以让您直接使用VB、VC、BCB、Access等工具,通过ODBC直接访问数据库。随着数据库与Internet的结合成为未来的趋势,安全性成为重要考虑因素。如何在确保安全性的前提下实现便捷访问,是当前的关键问题。
Dynamic Precision Rough Set Model for Mixed Information Systems
粗糙集是一种针对不确定性数据的数据挖掘理论,邻域粗糙集是处理混合型数据的常用模型。为了提高对混合型数据的抗噪能力,提出一种混合信息系统的变精度粗糙集模型;由于现实环境下信息系统的动态性,进一步提出对象增加和减少时的动态变精度粗糙集模型。首先研究混合信息系统中条件概率随对象增加和减少时的变化关系,然后在该变化关系的基础上提出混合信息系统变精度粗糙集上下近似的增量式更新机制,最后根据这一更新机制提出相应的增量式近似更新算法。实验结果表明,所提出的增量式更新算法比非增量的算法具有更高的计算效率,从而验证了所提出模型的有效性,同时也表明所提出模型更加适用于复杂的数据环境。
Student Information Management System Development Using C#and Access
学生信息管理系统是基于面向对象的程序设计语言C#和数据库管理系统ACCESS创建的一个信息管理系统。系统将根据现在学校学生管理的状况,设计成一个能提供对学生信息进行查询的系统。本系统不但要方便,而且要具有很大的实践性和可行性,大量简化管理人员的工作量,能为学校管理提供方便。此外,系统不仅要包含目前市面上的同类系统的基本功能及解决旧系统中存在的问题,还应该有所创新、改进。
Adjusted_Mutual_Information_Parallel_Computation_in_R_for_Clustering_Evaluation
该存储库提供了用于在R中计算聚类之间的调整后的互信息(AMI)、归一化的互信息(NMI)和调整后的兰德指数(ARI)的代码。NMI和ARI是广泛应用且成熟的分区一致性度量标准,而AMI提供了一种归一化互信息度量,通过计算观察到的群集大小分布的预期互信息(EMI)来校正随机预期的分区重叠基线值。这种度量标准有助于更精确地评估聚类效果,特别是在具有不均匀分布或不同规模的聚类中。 该存储库的代码可高效并行计算这些指标,特别适用于生物学应用,例如在将微生物宏基因组序列数据聚类成OTU时评估分区一致性。提供的数据集包含大约1M序列,通过完整链接或平均链接聚类方法,将其聚集成OTU。两个分区结果以每行一行
Rough Approximation in Incomplete Multi-Granularity Sequential Information Systems
粒计算是知识表示和数据挖掘的一个重要方法。它模拟人类思考模式,以粒为基本计算单位,以处理大规模复杂数据和信息等建立有效的计算模型为目标。针对具有多粒度标记的不完备序信息系统的知识获取问题,首先介绍了不完备多粒度序信息系统的概念,并在不完备多粒度序信息系统中定义了优势关系,同时给出了由优势关系导出的优势类。进一步定义了基于优势关系的集合的序下近似与序上近似的概念,并讨论了它们性质。