序列处理
当前话题为您枚举了最新的序列处理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Pandas时间序列数据: 转换与处理
Pandas时间序列数据: 转换与处理
本篇主要讲解如何使用Pandas转换与处理时间序列数据, 涉及以下几个核心概念:
时间相关的类: Timestamp, Period, Timedelta
Timestamp: 属性与使用方法
Period: 属性与使用方法
DatetimeIndex: 创建与使用, 函数参数详解
PeriodIndex: 创建与使用, 函数参数详解
课堂案例: 通过实际案例, 深入理解Pandas时间序列数据处理技巧
统计分析
21
2024-05-12
时间序列处理工具库 - tslib详解
tslib是一个专为处理由MIMO系统产生的3D时间序列数组而设计的工具库。这些函数不仅可以将3D数组转换为2D时间序列矩阵,还支持反向转换和多种代数运算。该库位于名为tslib的目录中,并包含一份简短的PDF描述文件。演示中展示了部分函数,特别用于计算线性二自由度系统对各种激励的响应。
Matlab
16
2024-07-30
使用Hive处理Protobuf序列化文件的方法
在大数据处理领域,Apache Hive是一款重要工具,提供SQL-like接口查询、管理和分析存储在分布式存储系统(如Hadoop)中的大规模数据集。重点介绍如何利用Hive读取Protobuf序列化的文件及相关技术细节。Protocol Buffers(Protobuf)是Google开发的数据序列化协议,用于高效结构化数据的传输和存储。Hive本生支持的SerDe(序列化/反序列化)方式如Text SerDe和Writable SerDe并不直接支持Protobuf数据格式。因此,我们需安装自定义的Protobuf SerDe,并创建包含Protobuf schema的Hive表。集成步
Hive
12
2024-08-19
Matlab中的数字信号处理单位抽样序列探讨
数字信号处理在Matlab环境下的单位抽样序列探索。
算法与数据结构
8
2024-09-14
修改序列
ALTER SEQUENCE 语句可修改序列的增量值、最大值、最小值、循环选项和缓存选项。如果序列达到 MAXVALUE 限制,修改序列继续使用。
Oracle
18
2024-05-25
谷歌序列到序列教程Matlab代码实现
Thang Luong、Eugene Brevdo和赵瑞编写的神经机器翻译(seq2seq)教程,这是谷歌项目的一个分支。本教程帮助使用稳定TensorFlow版本的研究者快速上手。它详细介绍了如何构建竞争力强的seq2seq模型,特别适用于神经机器翻译任务。教程提供了最新的解码器/注意包装器,结合了TensorFlow 1.2数据迭代器和专业的递归模型知识,为构建最佳NMT模型提供了实用的提示和技巧。完整的实验结果和预训练模型在公开可用的数据集上进行验证。
Matlab
14
2024-07-14
数字趋势序列子序列匹配算法2007
数字趋势序列的子序列匹配算法是时序数据中的一项挺有意思的技术。针对传统趋势序列的一些局限,提出了数字趋势序列和趋势序列展开等新概念。算法通过计算片段的斜率来衡量趋势,使用动态时间规整(DTW)快速搜索算法来子序列匹配问题。算法分为三个部分:DTW 顺序搜索、约束机制、冗余消除机制,并且在实际股票数据中得到了验证。嗯,如果你对时序数据有兴趣,或者需要股票数据,这个算法还蛮实用的。
数据挖掘
0
2025-06-13
Oracle 序列简介
Oracle 序列用于生成唯一且有序的数字序列。它常用于主键和时间戳等需要递增数字字段的场景。
Oracle
13
2024-04-29
创建序列语法
CREATE SEQUENCE sequence [INCREMENT BY n] [START WITH n] [{MAXVALUE n | NOMAXVALUE}] [{MINVALUE n | NOMINVALUE}] [{CYCLE | NOCYCLE}] [{CACHE n | NOCACHE}];
Oracle
19
2024-04-30
知识背景序列模型与时间序列模型的对比分析-序列模式挖掘
知识背景的序列模型和时间序列模型,经常让人傻傻分不清。其实还挺好区分的。序列模型主要是一串行为的顺序,比如用户买了 A 又买 B,再买 C——这种叫行为路径挖掘;而时间序列模型更像是盯着一个指标随时间变动的走势,比如股票价格、温度变化那类有时间自相关的事。想挖点干货?这几个资源还蛮值得一看:ARMA 模型那个不错,直接上了Python 代码,方便你边看边跑。还有个叫resampleX的工具,专门搞时间序列重采样,数据挺顺手。如果你喜欢用MATLAB或SAS做,也有现成的教程和代码,比如MATLAB 时间序列和SAS 时间序列。嗯,页面风格有点老,不过内容挺实用的。还有一点要注意,时间序列的建模
数据挖掘
0
2025-07-02