异常识别

当前话题为您枚举了最新的 异常识别。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于运动模式的异常行为识别
我们提出一种基于运动模式的异常行为检测方法。我们提取时空描述符并建立稀疏主题模型,以获取视频的典型运动模式。通过分析重构精度和运动模式组成,我们可以检测视频中的异常行为。
MATLAB异常行为识别系统设计
这个项目是我个人的实践成果,答辩评分高达90分,并且所有代码都经过了充分的调试和测试,保证可以稳定运行。适合计算机、通信、人工智能和自动化等专业的学生、教师和从业者下载使用。可用于期末课程设计、课程大作业或毕业设计,具有很高的学习和参考价值。技术熟练的用户可以基于此项目进行修改和调整,以满足不同的需求。欢迎下载使用,也欢迎交流和学习,共同进步!
我国汇率可加异常值识别(基于 Gibbs 抽样)
Gibbs 抽样法可识别汇率可加异常值。经实证研究,我国人民币对美元汇率月度数据中存在可加异常值。
基于运动特征的人群异常行为识别方法
针对现有公共场所人群监控方法准确性和实时性不足的问题,提出一种基于人群运动特征的异常行为识别方法。首先,采用Lucas-Kanade算法计算人群中稀疏特征点的光流场,并进行时空滤波处理;然后,提取特征点的运动方向、速度和加速度等运动信息;接着,将速度幅值、运动方向变化量和加速度幅值映射到RGB图像通道,构建运动显著图;最后,设计并训练卷积神经网络模型对运动显著图进行分析,识别异常行为。
股票数据处理中的异常类型识别MATLAB案例分析
股票数据中存在文字描述,数据量较大且格式不一,因此编写案例代码成为学习的最佳途径。
高维数据中的异常检测-综述异常检测方法
高维数据的异常探测方法由Aggarwal和Yu (SIGMOD’2001)提出。该方法将高维数据集映射到低维子空间,通过评估子空间中数据的稀疏性来识别异常数据。
异常检测技术综述
异常检测是数据和机器学习中不可忽视的一部分,是在大量时序数据或高维数据时,了解和使用合适的检测方法重要。如果你对这个话题感兴趣,以下这些资源都挺不错的,你更好地理解和实现异常检测。 异常入侵检测技术探究这篇文章通过深入不同的入侵检测方法,你理解网络安全中的异常行为探测。点击查看。 对于时序数据的异常检测,pyculiarity是一个有用的工具,它支持各种时序数据的异常检测和可视化,你可以在这篇文章中找到详细的使用指南:点击查看。 如果你用的是 Matlab,可以试试iForest的异常检测代码。它是基于孤立森林算法,适用于大数据集的异常检测,下载链接:点击查看。 除了这些,还有多与异常检测相关
基于Spark和K-means聚类的电力系统异常数据识别方法
基于 Spark 的并行 K-means 聚类,挺适合用来识别电力系统里那些“看起来不太对劲”的数据。原理不复杂,说白了就是拿负荷曲线来做聚类,看哪些数据落在奇怪的位置上。用的是 Spark 的并行能力,大数据集比 MapReduce 灵活多了,尤其是迭代多的时候,效率高不少。 电力系统的数据那叫一个多又杂,尤其是做状态估计的时候,不干净的数据会直接影响计算结果。用 K-means 来分类,再结合 Spark 跑并行任务,速度还挺快的,实验用的还是 EUNITE 的真实负荷数据,实战味道足。 这个方法最妙的地方是:能跑得快,跑得稳,还能跑在集群上。尤其适合那种数据量上亿、每天都在变的系统。要是
异常值剔除程序
使用MATLAB编写的异常值剔除程序,用于数据预处理。
异常检测算法综述基于不同方法的异常探测分类
异常检测方法可以基于多种不同的方法进行分类:包括统计学方法、距离度量方法、偏差检测方法和密度估计方法。这些方法在处理高维数据时也有各自的应用场景。