Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
关联规则挖掘综述
数据挖掘
29
PDF
910.8KB
2024-05-19
#数据挖掘
#关联规则
#数据分析
#知识发现
#大数据
关联规则挖掘
该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
相关推荐
关联规则挖掘综述文档
关联规则的经典资料,讲得真挺细的,尤其适合你刚上手或者想系统梳理一下这个技术的时候用。像Apriori、FP-Growth这些老牌算法也都覆盖到了,解释也算到位,不绕。内容不光讲算法,还讲了不少实际应用,比如零售、电商那种谁和谁老一起买的场景,看完你就能立马想象怎么用到项目里。我还挺喜欢里面对支持度、可信度、兴趣度的区分,讲得清楚,读完不会脑子打结。如果你正好在搞数据挖掘,或者你有用户行为相关的需求,这篇综述文档蛮值得一看,结构清晰,内容也全。嗯,链接我也顺手放下面了,有需要直接点。
DB2
0
2025-06-22
关联规则挖掘数据挖掘中的关联规则分析
关联规则挖掘在数据挖掘中有着广泛的应用,最典型的例子就是购物篮。比如,你想知道顾客常常购买哪些商品组合?通过关联规则挖掘,你能出哪些商品常常一起被买,哪些商品的购买时间序列比较稳定。像超市货架设计、库存管理等,都能从这些中受益。通过这些技术,你可以更好地满足顾客需求,提高销售效率。如果你刚开始接触数据挖掘,学习购物篮问题是一个不错的起点。这里有些链接可以进一步你了解相关的技术和案例哦。
数据挖掘
0
2025-06-24
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如: 牛奶 → 面包 [20%, 60%] 酸奶 → 黄面包 [6%, 50%]
数据挖掘
24
2024-05-25
加权负关联规则挖掘
针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
DB2
11
2024-04-30
Apriori关联规则挖掘算法
数据挖掘里的关联,Apriori 算法算是个“老朋友”了。它用得还挺广,尤其是做零售、电商相关的频繁项集挖掘,比如顾客买了 A 还会不会买 B。Apriori.cpp和MyApriori.cpp这俩文件里头实现了标准和改进版的算法逻辑。要直接跑程序也可以,压缩包里有Apriori.exe和MyApriori.exe,点一下就能试,省了编译的事儿。
数据挖掘
0
2025-06-24
关联规则和动态关联规则简介
本内容适合于数据挖掘方向的硕士研究生阅读学习,对关联规则与动态关联规则做了简介。
数据挖掘
12
2024-04-30
数据挖掘 - 关联规则挖掘
本节讨论关联挖掘的基本概念、算法和应用。关联规则挖掘是一种发现频繁模式和强关联关系的技术,广泛应用于零售、金融和医疗等领域。
数据挖掘
12
2024-05-31
关联规则挖掘示例解析
以关联规则 A C 为例,深入解读其支持度和置信度: 支持度 (Support): 衡量规则 A C 在所有交易中出现的频率。 计算公式:support(A C) = support({A, C}) = 50% 解读:意味着在所有交易中,同时包含 A 和 C 的交易占 50%。 置信度 (Confidence): 衡量在包含 A 的交易中,也包含 C 的交易的比例。 计算公式:confidence(A C) = support({A, C}) / support({A}) = 66.6% 解读:意味着在所有包含 A 的交易中,有 66.6% 的交易也包含 C。 A
算法与数据结构
10
2024-05-23
WEKA关联规则挖掘教程
WEKA 的Apriori算法挺实用的,适合做关联规则挖掘。通过Apriori算法,你可以轻松找出数据之间的关系,像超市购物数据或者是用户行为这些都能用上。参数配置也挺直观,像-I输出项集、-N 10设置规则数为 10,这些都可以根据需要调整。如果你对关联规则挖掘有点兴趣,可以尝试下这个算法。是-C 0.9这个最小置信度设置,挺有用的,能帮你提高挖掘质量。不过,记得根据数据的不同调整-M和-U这些支持度参数哦。,WEKA 的Apriori算法在数据挖掘中还蛮受欢迎的,配置简单,效果也不错。
Hadoop
0
2025-06-11