针对Hive on Spark在CDH 6.3.0环境下的调优,总结生产经验
CDH 6.3.0搭建Hive on Spark配置调优实战
相关推荐
实战指南:Hadoop、Spark、Zookeeper 构建与调优
实战指南:Hadoop、Spark、Zookeeper 构建与调优
这份指南涵盖了 Hadoop、Spark 和 Zookeeper 的配置要点,帮助您构建和优化这些大数据平台的核心组件。
Hadoop 配置
核心配置文件:core-site.xml、hdfs-site.xml、mapred-site.xml、yarn-site.xml
关键参数:数据存储路径、副本数量、内存分配、任务调度策略
Spark 配置
核心配置文件:spark-defaults.conf、spark-env.sh
关键参数:执行模式、资源分配、序列化方式、shuffle 行为
Zookeeper 配置
核心
spark
15
2024-04-29
Hive调优总结文档-Hive Tuning PPT
Hive是Apache Hadoop生态系统中的数据仓库工具,允许用户使用SQL方言(HQL)对存储在HDFS上的大规模数据进行查询和分析。在大数据处理中,Hive性能优化是关键环节,以提高查询速度和系统资源利用率。以下是对Hive调优总结文档-Hive Tuning PPT中可能涉及的多个知识点的详细阐述:
元数据优化:
分区策略:根据业务需求设计分区字段,减少不必要的数据扫描,例如按日期、地区等分区。
桶表:通过哈希函数将数据分布到预定义的桶中,提高JOIN操作的效率,尤其是等值JOIN。
物理存储优化:
列式存储:Hive支持ORC、Parquet等列式存储格式,列式存储能有效
Hive
18
2024-07-12
Spark性能调优秘诀
Spark以内存计算著称,因此CPU、带宽和内存资源都可能成为性能瓶颈。通常情况下,内存充足时,瓶颈主要受限于网络带宽。然而,有时也需要进行序列化优化等操作来降低内存占用率。
本指南着重介绍两方面内容:
数据序列化:这是提升网络性能和降低内存消耗的关键。
内存优化:我们将简要介绍一些实用技巧。
通过优化数据序列化,可以有效减少数据在网络传输过程中占用的带宽,并降低内存存储压力。内存优化技巧则有助于更有效地利用内存资源,避免不必要的浪费,从而提升整体性能。
spark
17
2024-05-12
Spark调优策略详解
深入探讨了如何优化Spark性能,涵盖了性能监控、数据倾斜处理、shuffle调优等关键内容。讨论了合理配置worker与executor、内存分配优化、CPU使用率监控及网络带宽管理等调优要点,并通过实际案例展示了企业级大数据平台的调优方法。
spark
14
2024-09-13
Spark调优在Facebook实践
本内容分享了Facebook在Spark调优方面的实践经验。
spark
16
2024-04-30
Spark 性能调优: 本质与要点
大数据性能调优的本质是什么?我们的目标是什么?从何处入手?在深入 Spark 性能调优之前,理解这些至关重要的问题至关重要。
Spark 性能调优的要点包括:
资源优化参数调优
高效 RDD 操作算子
通过掌握这些要点,我们可以有效提升 Spark 的性能。
spark
18
2024-05-14
Hive中MapReduce任务的参数调优
在Hive中,合理设置Map和Reduce的参数对于提升查询性能至关重要。以下是一些常用的参数及其配置建议:
控制Map任务数量的参数:
mapred.map.tasks: 手动设置Map任务数量。
mapreduce.input.fileinputformat.split.maxsize: 控制输入文件分片大小,间接影响Map任务数量。
控制Reduce任务数量的参数:
mapred.reduce.tasks: 手动设置Reduce任务数量。
hive.exec.reducers.bytes.per.reducer: 控制每个Reduce任务处理的数据量。
其他重要参数:
hive
Hive
11
2024-06-21
Oracle SQL调优技巧实战分享
Oracle SQL调优技巧在实际应用中的关键性探讨。
Oracle
8
2024-07-29
Oracle_SQL性能调优实战
数据库性能影响数据库系统性能的要素:
主机CPU, RAM, 存储系统;
操作系统参数配置, ORACLE参数配置;
应用方面:数据库设计及SQL编程的质量。
一个性能优秀的应用系统需要:
良好的硬件配置;
正确合理的数据库及中间件参数配置;
合理的数据库设计;
良好的SQL编程;
运行期的性能优化。
Oracle
9
2024-11-06