绵羊品种分类数据挺适合拿来练练图像分类模型的。数据包含来自澳大利亚四种绵羊品种的图像,分门别类,按照品种分组存储。图片已经对齐,可以直接用来训练。再加上 CC BY 4.0 的许可,商业项目用起来也没啥问题。你可以尝试把分类准确率拉到 95%以上,挑战蛮有趣的!,数据文件夹组织比较规整,训练起来还算省心。
绵羊品种分类数据图像分类数据集
相关推荐
传统图像分类方法在FashionMNIST数据集上的应用
传统图像分类方法做 FashionMNIST 的分类,嗯,还挺有意思的。你别看现在深度学习火得不行,像 SVM 这种“老前辈”其实在某些场景下还是能打。尤其数据不大时,用个合适的核函数,配合手工提取的特征,表现还真不赖。
边缘特征、纹理信息这些以前常用的套路,现在也能拿来练练手。比如用 Canny 做边缘检测,提取完特征后丢给 SVM 分类。核函数选得巧,像RBF这种就挺适合非线性的图像数据。结果有时候比你随便搭个神经网络还稳。
,前馈神经网络(FFNN)也没落下,还是放进去比了比效果。用起来也不复杂,层数少点,反向传播跑一会儿,准确率也还不错。适合想快速跑通一个图像分类任务的时候。
代码里还
数据挖掘
0
2025-06-15
机器学习与数据挖掘中的图像分类数据集
在机器学习和数据挖掘领域,图像分类是一项基础且关键的任务,涉及计算机视觉和模式识别。这个专为研究而设计的“猫狗分类数据集”包含猫和狗两类图像,用于训练模型并评估其性能。数据集已预先划分为训练集和测试集,便于开发者进行模型训练和泛化能力验证。数据预处理阶段包括图像缩放、归一化和增强等步骤,以提高模型训练效率。特征提取使用卷积神经网络(CNN)等方法,帮助模型从图像中提取有意义的特征。常用的模型包括SVM、随机森林以及经典的深度学习模型如AlexNet和ResNet,这些模型通过反向传播和梯度下降进行训练优化。模型评估通过准确率、精确率、召回率和F1分数等指标进行,以验证模型在测试集上的预测效果。
数据挖掘
18
2024-07-17
垃圾分类数据集
Gary Thung 和 Mindy Yang 收集的图像数据集,用于垃圾分类任务。有助于了解垃圾分类方法,指导普通民众科学处理垃圾,提高城市环境质量。
算法与数据结构
19
2024-05-01
Iris分类数据集
iris.csv 的分类数据,真的是机器学习入门选手绕不开的一份宝藏资源。数据结构清晰,三个类别,四个特征,CSV 格式直接拿来用,适合你练手分类模型。不管你用的是 Python 的scikit-learn,还是 Weka 这些可视化工具,都挺方便的。你要是想了解数据集背景,鸢尾花(Iris flower)本身也是个经典的案例。
我自己最早也是拿它来试了下逻辑回归,后来又用在神经网络上测试分类效果。说实话,数据量不大,跑得快,调参也不烦,反馈快,哪怕你代码写得不太优,也能快发现问题。像train_test_split分个训练集测试集,几行代码就能跑起来。
如果你用 Weka 的话,别错过这个I
spark
0
2025-06-16
图像分类方法
空间金字塔模型对图像进行划分,分别提取各子块特征,赋予不同权重。三层模型下,划分等级0权重1/4,等级1权重1/4,等级2权重1/2。该模型有效描述图像的空间信息。
数据分类算法包括最大熵、支持向量机、朴素贝叶斯、决策树等。
数据挖掘
18
2024-04-30
CensusIncomeData收入分类数据集
人口普查数据的收入预测,蛮适合想练手分类模型的朋友。CensusIncomeData数据干净,变量信息丰富,像年龄、教育、工作时间这些全都有,拿来训练个逻辑回归或者随机森林效果都挺不错。适合用来试水二分类任务,看看你的模型能不能识别出谁年入超 5 万。
数据来自 1994 年的人口普查库,Ronny Kohavi和Barry Becker帮忙筛过,基本不用太多清洗就能上手。哦对了,它也叫“成人收入数据集”,你在 Kaggle、UCI 上也能看到,算是机器学习界的老网红了。
训练目标简单:判断某人年收入是不是高于50K。输入特征包括职业、婚姻状态、教育背景等等,适合试试逻辑回归、随机森林、XGB
数据挖掘
0
2025-06-14
CIFAR-10Python图像分类资源&CIFAR-100Python图像分类资源
CIFAR-10 和 CIFAR-100 的 Python 代码资源是搞图像分类比较常用的家伙,图像小、加载快,挺适合新手和做实验的同学用来练手。你用 PyTorch 也好,TensorFlow 也行,加载、预、训练模型、评估效果这几步都有现成的套路,基本不用怎么折腾。
CIFAR-10是 10 类,比如飞机、青蛙、卡车啥的,一共 6 万张小图,32x32像素,看着有点糊但训练快。CIFAR-100就更细,分成 100 类,挑战性高一点,适合想再进阶的你。
加载数据你可以用torchvision.datasets.CIFAR10或tf.keras.datasets.cifar10,接口简单,响
数据挖掘
0
2025-06-17
心跳信号分类预测数据集
本数据集用于预测心电图心跳信号类别,包含超过 20 万条来自某平台的心电图数据记录,每条数据均由 1 列采样频次一致、长度相等的信号序列组成。为确保比赛公平,将抽取 10 万条作为训练集,2 万条作为测试集 A,2 万条作为测试集 B,并对心跳信号类别进行脱敏处理。数据集包含以下文件:testA.csv、sample_submit.csv 和 train.csv。
数据挖掘
16
2024-05-19
UCI数据集分类算法性能评估
本实验选用UCI数据集进行研究,共进行了15~16个实验组。每个组选择一个数据集进行分析,并评估至少三种分类算法的性能。结果表明,某些算法表现显著优于其他算法。文章详细解释了性能最佳算法的实验结果,包括文字和图形评估结果。
数据挖掘
13
2024-07-17